scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story

01 Jan 2001-Accounts of Chemical Research (American Chemical Society)-Vol. 34, Iss: 1, pp 18-29
TL;DR: The discussion includes an analysis of trends in catalyst activity, a description of catalysts coordinated with N-heterocyclic carbene ligands, and an overview of ongoing work to improve the activity, stability, and selectivity of this family of L2X2Ru=CHR complexes.
Abstract: In recent years, the olefin metathesis reaction has attracted widespread attention as a versatile carbon−carbon bond-forming method. Many new applications have become possible because of major advances in catalyst design. State-of-the-art ruthenium catalysts are not only highly active but also compatible with most functional groups and easy to use. This Account traces the ideas and discoveries that were instrumental in the development of these catalysts, with particular emphasis on (PCy3)2Cl2RuCHPh and its derivatives. The discussion includes an analysis of trends in catalyst activity, a description of catalysts coordinated with N-heterocyclic carbene ligands, and an overview of ongoing work to improve the activity, stability, and selectivity of this family of L2X2RuCHR complexes.
Citations
More filters
Journal ArticleDOI
TL;DR: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry as mentioned in this paper, and they not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine.
Abstract: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry. They not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine. Because of their specific coordination chemistry, N-heterocyclic carbenes both stabilize and activate metal centers in quite different key catalytic steps of organic syntheses, for example, C-H activation, C-C, C-H, C-O, and C-N bond formation. There is now ample evidence that in the new generation of organometallic catalysts the established ligand class of organophosphanes will be supplemented and, in part, replaced by N-heterocyclic carbenes. Over the past few years, this chemistry has been the field of vivid scientific competition, and yielded previously unexpected successes in key areas of homogeneous catalysis. From the work in numerous academic laboratories and in industry, a revolutionary turning point in oraganometallic catalysis is emerging.

3,388 citations

Journal ArticleDOI
TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Abstract: The chemistry of heterocyclic carbenes has experienced a rapid development over the last years. In addition to the imidazolin-2-ylidenes, a large number of cyclic diaminocarbenes with different ring sizes have been described. Aside from diaminocarbenes, P-heterocyclic carbenes, and derivatives with only one, or even no heteroatom within the carbene ring are known. New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclization of β-functionalized isocyanides have been developed recently. This review summarizes the new developments regarding the synthesis of N-heterocyclic carbenes and their metal complexes.

2,454 citations

Journal ArticleDOI
TL;DR: Some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.
Abstract: Dynamic covalent chemistry relates to chemical reactions carried out reversibly under conditions of equilibrium control. The reversible nature of the reactions introduces the prospects of "error checking" and "proof-reading" into synthetic processes where dynamic covalent chemistry operates. Since the formation of products occurs under thermodynamic control, product distributions depend only on the relative stabilities of the final products. In kinetically controlled reactions, however, it is the free energy differences between the transition states leading to the products that determines their relative proportions. Supramolecular chemistry has had a huge impact on synthesis at two levels: one is noncovalent synthesis, or strict self-assembly, and the other is supramolecular assistance to molecular synthesis, also referred to as self-assembly followed by covalent modification. Noncovalent synthesis has given us access to finite supermolecules and infinite supramolecular arrays. Supramolecular assistance to covalent synthesis has been exploited in the construction of more-complex systems, such as interlocked molecular compounds (for example, catenanes and rotaxanes) as well as container molecules (molecular capsules). The appealing prospect of also synthesizing these types of compounds with complex molecular architectures using reversible covalent bond forming chemistry has led to the development of dynamic covalent chemistry. Historically, dynamic covalent chemistry has played a central role in the development of conformational analysis by opening up the possibility to be able to equilibrate configurational isomers, sometimes with base (for example, esters) and sometimes with acid (for example, acetals). These stereochemical "balancing acts" revealed another major advantage that dynamic covalent chemistry offers the chemist, which is not so easily accessible in the kinetically controlled regime: the ability to re-adjust the product distribution of a reaction, even once the initial products have been formed, by changing the reaction's environment (for example, concentration, temperature, presence or absence of a template). This highly transparent, yet tremendously subtle, characteristic of dynamic covalent chemistry has led to key discoveries in polymer chemistry. In this review, some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.

1,880 citations

Journal ArticleDOI
TL;DR: The fascinating story of olefin (or alkene) metathesis began almost five decades ago, when Anderson and Merckling reported the first carbon-carbon double-bond rearrangement reaction in the titanium-catalyzed polymerization of norbornene.
Abstract: The fascinating story of olefin (or alkene) metathesis (eq 1) began almost five decades ago, when Anderson and Merckling reported the first carbon-carbon double-bond rearrangement reaction in the titanium-catalyzed polymerization of norbornene. Nine years later, Banks and Bailey reported “a new disproportionation reaction . . . in which olefins are converted to homologues of shorter and longer carbon chains...”. In 1967, Calderon and co-workers named this metal-catalyzed redistribution of carbon-carbon double bonds olefin metathesis, from the Greek word “μeτάθeση”, which means change of position. These contributions have since served as the foundation for an amazing research field, and olefin metathesis currently represents a powerful transformation in chemical synthesis, attracting a vast amount of interest both in industry and academia.

1,696 citations

References
More filters
Journal ArticleDOI
TL;DR: These air- and water-tolerant complexes were shown to exhibit an increased ring-closing metathesis activity at elevated temperature when compared to that of the parent complex 2 and the previously developed complex 3.

3,127 citations

Journal ArticleDOI
TL;DR: In this paper, the reactions of RuCl2(PPh3)3 with a number of diazoalkanes were surveyed, and alkylidene transfer was observed for RCHN2 and various para-substituted aryl diazalkanes p-C6H4X CHN2.
Abstract: The reactions of RuCl2(PPh3)3 with a number of diazoalkanes were surveyed, and alkylidene transfer to give RuCl2(CHR)(PPh3)2 (R = Me (1), Et (2)) and RuCl2(CH-p-C6H4X)(PPh3)2 (X = H (3), NMe2 (4), OMe (5), Me (6), F (7), Cl (8), NO2 (9)) was observed for alkyl diazoalkanes RCHN2 and various para-substituted aryl diazoalkanes p-C6H4XCHN2. Kinetic studies on the living ring-opening metathesis polymerization (ROMP) of norbornene using complexes 3−9 as catalysts have shown that initiation is in all cases faster than propagation (ki/kp = 9 for 3) and that the electronic effect of X on the metathesis activity of 3−9 is relatively small. Phosphine exchange in 3−9 with tricyclohexylphosphine leads to RuCl2(CH-p-C6H4X)(PCy3)2 10−16, which are efficient catalysts for ROMP of cyclooctene (PDI = 1.51−1.63) and 1,5-cyclooctadiene (PDI = 1.56−1.67). The crystal structure of RuCl2(CH-p-C6H4Cl)(PCy3)2 (15) indicated a distorted square-pyramidal geometry, in which the two phosphines are trans to each other, and the alkyli...

1,957 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in olefin metathesis focusing on the areas of ring-closing olefi cation (RCM) and cross-metathesis is presented.

1,877 citations

Journal ArticleDOI
TL;DR: The quest for stable carbenes is a long saga whose origin can be traced back to the first half of the 1800s as discussed by the authors, and the first stable crystalline carbene was reported in the early 1970s.
Abstract: A decade ago we initiated research, the goal of which was isolation of a stable carbene. Our success has helped to catalyze a resurgence of interest in readily available and easily handled carbenes. Research on stable (nucleophilic) carbenes is again a popular theme worldwide. Efforts in the general area of stable carbenes now focus not only on chemistry of the carbenes themselves but also on their applications to other chemical systems, where their chemical properties create technical opportunities that are unavailable with other functional groups. The quest for isolable carbenes is a long saga whose origin can be traced back to the first half of the 1800s. A recently published history of this quest provides an important backdrop for the research described in this Account.1 It is the intent of this Account to delineate the events and environment that led to the report from DuPont laboratories of the first isolation of a stable crystalline carbene. Getting Started

1,016 citations