scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Dynamics of General Relativity

TL;DR: This article appeared as Chapter 7 of an often cited compendium edited by L. Witten in 1962 as mentioned in this paper, which is now long out of print and is intended to provide contemporary accessibility to the flavor of the original ideas.
Abstract: This article--summarizing the authors' then novel formulation of General Relativity--appeared as Chapter 7 of an often cited compendium edited by L. Witten in 1962, which is now long out of print. Intentionally unretouched, this posting is intended to provide contemporary accessibility to the flavor of the original ideas. Some typographical corrections have been made: footnote and page numbering have changed--but not section nor equation numbering etc. The authors' current institutional affiliations are encoded in: arnowitt@physics.this http URL, deser@brandeis.edu, misner@physics.this http URL .
Citations
More filters
Journal ArticleDOI
TL;DR: Recently, the possibility of a massive graviton has seen a resurgence of interest due to recent progress which has overcome its traditional problems, yielding an avenue for addressing important open questions such as the cosmological constant naturalness problem as mentioned in this paper.
Abstract: Massive gravity has seen a resurgence of interest due to recent progress which has overcome its traditional problems, yielding an avenue for addressing important open questions such as the cosmological constant naturalness problem. The possibility of a massive graviton has been studied on and off for the past 70 years. During this time, curiosities such as the van Dam, Veltman, and Zakharov (vDVZ) discontinuity and the Boulware-Deser ghost were uncovered. These results are rederived in a pedagogical manner and the St\"uckelberg formalism to discuss them from the modern effective field theory viewpoint is developed. Recent progress of the last decade is reviewed, including the dissolution of the vDVZ discontinuity via the Vainshtein screening mechanism, the existence of a consistent effective field theory with a stable hierarchy between the graviton mass and the cutoff, and the existence of particular interactions which raise the maximal effective field theory cutoff and remove the ghosts. In addition, some peculiarities of massive gravitons on curved space, novel theories in three dimensions, and examples of the emergence of a massive graviton from extra dimensions and brane worlds are reviewed.

1,187 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent progress in massive gravity is presented, showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model, cascading gravity and ghost-free massive gravity.
Abstract: We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model, cascading gravity and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.

924 citations

Journal ArticleDOI
TL;DR: In this paper, a non-linear bimetric theory of a massless spin-2 field interacting with a massive spin2 field was constructed, which is free of the Boulware-Deser ghost.
Abstract: Generically, non-linear bimetric theories of gravity suffer from the same Boulware-Deser ghost instability as non-linear theories of massive gravity. However, recently proposed theories of massive gravity have been shown to be ghost-free. These theories are formulated with respect to a flat, non-dynamical reference metric. In this work we show that it is possible to give dynamics to the reference metric in such a way that the consistency of the theory is maintained. The result is a non-linear bimetric theory of a massless spin-2 field interacting with a massive spin-2 field that is free of the Boulware-Deser ghost. To our knowledge, this is the first construction of such a ghost-free bimetric theory.

890 citations

Journal ArticleDOI
TL;DR: In this paper, an application of loop quantum cosmology to homogeneous systems, which removes classical singularities, is presented, where the main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory.
Abstract: Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

811 citations

Journal ArticleDOI
TL;DR: A new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner that has introduced a more physical setting for black hole thermodynamics, suggested a phenomenological model for hairy black holes, provided novel techniques to extract physics from numerical simulations, and led to new laws governing the dynamics ofblack holes in exact general relativity.
Abstract: Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modelled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity, and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity, suggested a phenomenological model for hairy black holes, provided novel techniques to extract physics from numerical simulations, and led to new laws governing the dynamics of black holes in exact general relativity.

761 citations

References
More filters
Book
01 Apr 1950

2,789 citations

01 Jan 1962

1,113 citations

Book
01 Jan 1950
TL;DR: In this article, the Unconnected Manifold and the affinely connected manifold are discussed, and the meaning of the metric according to the special theory of relativity is discussed.
Abstract: Introduction Part I. The Unconnected Manifold: 1. Invariance 2. Integrals Part II. Affinely Connected Manifold: 3. Invariant derivatives 4. Some relations between ordinary and invariant derivatives 5. The notion of parallel transfer 6. The curvature tensor 7. The geodesics of an affine connexion 8. The general geometrical hypothesis about gravitation Part III. Metrically Connected Manifold: 9. Metrical affinities 10. The meaning of the metric according to the special theory of relativity 11. Conservation laws and variational principles 12. Generalizations of Einstein's theory.

478 citations