scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Earth Observation-based Anomaly Detection (EOAD) system: A simple, scalable approach to mapping in-field and farm-scale anomalies using widely available satellite imagery

TL;DR: In this paper, the Earth Observation-based Anomaly Detection (EOAD) approach is proposed to detect in-field anomalies through automatic thresholding of optical Vegetation Index data, based on their deviation from a normal distribution.
About: This article is published in International Journal of Applied Earth Observation and Geoinformation.The article was published on 2021-12-15 and is currently open access. It has received 2 citations till now. The article focuses on the topics: Anomaly detection & Population.
Citations
More filters
Journal ArticleDOI
01 May 2022-Sensors
TL;DR: Qualitative results show that SSAE is capable of detecting unknown objects, whereas the object detector is unable to do so and fails to identify known classes of objects in specific cases.
Abstract: The safe in-field operation of autonomous agricultural vehicles requires detecting all objects that pose a risk of collision. Current vision-based algorithms for object detection and classification are unable to detect unknown classes of objects. In this paper, the problem is posed as anomaly detection instead, where convolutional autoencoders are applied to identify any objects deviating from the normal pattern. Training an autoencoder network to reconstruct normal patterns in agricultural fields makes it possible to detect unknown objects by high reconstruction error. Basic autoencoder (AE), vector-quantized variational autoencoder (VQ-VAE), denoising autoencoder (DAE) and semisupervised autoencoder (SSAE) with a max-margin-inspired loss function are investigated and compared with a baseline object detector based on YOLOv5. Results indicate that SSAE with an area under the curve for precision/recall (PR AUC) of 0.9353 outperforms other autoencoder models and is comparable to an object detector with a PR AUC of 0.9794. Qualitative results show that SSAE is capable of detecting unknown objects, whereas the object detector is unable to do so and fails to identify known classes of objects in specific cases.

6 citations

Proceedings ArticleDOI
24 May 2022
TL;DR: In this article , the use of the Deep Learning approach Detectron2 in order to produce instance image segmentation, to make distinguishing between the olive tree, its shadow and the soil.
Abstract: Agriculture in Tunisia is a very important economic sector especially olive tree cultivation. Monitoring the latter from space using remote sensing sensors remains challenging and requires to develop adapted code. Detection olive tree size can help to monitor the growth. To do it, we propose in this work to detect tree crown on high resolution satellite images, in particular Pléiades. To achieve this goal, we proposed the use of the Deep Learning approach Detectron2 in order to produce instance image segmentation, to make distinguishing between the olive tree, its shadow and the soil. Detectron2 was trained using a database of realistic images generated by the DART model. The evaluation results prove the validity of our proposed approach also the visual inspection shows good agreement with the reality.
References
More filters
Journal ArticleDOI
TL;DR: A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented and it is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a random chosen non-diseased subject.
Abstract: A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect difference...

19,398 citations

01 Jan 1993
TL;DR: The definition of drought has continually been a stumbling block for drought monitoring and analysis as mentioned in this paper, mainly related to the time period over which deficits accumulate and to the connection of the deficit in precipitation to deficits in usable water sources and the impacts that ensue.
Abstract: 1.0 INTRODUCTION Five practical issues become important in any analysis of drought. These include: 1) time scale, 2) probability, 3) precipitation deficit, 4) application of the definition to precipitation and to the five water supply variables, and 5) the relationship of the definition to the impacts of drought. Frequency, duration and intensity of drought all become functions that depend on the implicitly or explicitly established time scales. Our experience in providing drought information to a collection of decision makers in Colorado is that they have a need for current conditions expressed in terms of probability, water deficit, and water supply as a percent of average using recent climatic history (the last 30 to 100 years) as the basis for comparison. No single drought definition or analysis method has emerged that addresses all these issues well. Of the variety of definitions and drought monitoring methods used in the past, by far the most widely used in the United States is the Palmer Drought Index (Palmer, 1965), but its weaknesses (Alley, 1984) frequently limit its wise application. For example, time scale is not defined for the Palmer Index but does inherently exist. The definition of drought has continually been a stumbling block for drought monitoring and analysis. Wilhite and Glantz (1985) completed a thorough review of dozens of drought definitions and identified six overall categories: meteorological, climatological, atmospheric, agricultural, hydrologic and water management. Dracup et al. (1980) also reviewed definitions. All points of view seem to agree that drought is a condition of insufficient moisture caused by a deficit in precipitation over some time period. Difficulties are primarily related to the time period over which deficits accumulate and to the connection of the deficit in precipitation to deficits in usable water sources and the impacts that ensue.

6,514 citations

Journal ArticleDOI
TL;DR: In this article, a transformation technique was presented to minimize soil brightness influences from spectral vegetation indices involving red and near-infrared (NIR) wavelengths, which nearly eliminated soil-induced variations in vegetation indices.

5,450 citations

Journal ArticleDOI
TL;DR: AUC exhibits a number of desirable properties when compared to overall accuracy: increased sensitivity in Analysis of Variance (ANOVA) tests; a standard error that decreased as both AUC and the number of test samples increased; decision threshold independent; and it is invariant to a priori class probabilities.

5,359 citations

Journal ArticleDOI
TL;DR: This paper gives an overview of the development of object based methods, which aim to delineate readily usable objects from imagery while at the same time combining image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way.
Abstract: Remote sensing imagery needs to be converted into tangible information which can be utilised in conjunction with other data sets, often within widely used Geographic Information Systems (GIS). As long as pixel sizes remained typically coarser than, or at the best, similar in size to the objects of interest, emphasis was placed on per-pixel analysis, or even sub-pixel analysis for this conversion, but with increasing spatial resolutions alternative paths have been followed, aimed at deriving objects that are made up of several pixels. This paper gives an overview of the development of object based methods, which aim to delineate readily usable objects from imagery while at the same time combining image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way. The most common approach used for building objects is image segmentation, which dates back to the 1970s. Around the year 2000 GIS and image processing started to grow together rapidly through object based image analysis (OBIA - or GEOBIA for geospatial object based image analysis). In contrast to typical Landsat resolutions, high resolution images support several scales within their images. Through a comprehensive literature review several thousand abstracts have been screened, and more than 820 OBIA-related articles comprising 145 journal papers, 84 book chapters and nearly 600 conference papers, are analysed in detail. It becomes evident that the first years of the OBIA/GEOBIA developments were characterised by the dominance of ‘grey’ literature, but that the number of peer-reviewed journal articles has increased sharply over the last four to five years. The pixel paradigm is beginning to show cracks and the OBIA methods are making considerable progress towards a spatially explicit information extraction workflow, such as is required for spatial planning as well as for many monitoring programmes.

3,809 citations