scispace - formally typeset
Search or ask a question
Book

The earth's ionosphere

01 Jan 1989-
About: The article was published on 1989-01-01 and is currently open access. It has received 862 citations till now. The article focuses on the topics: Ionosphere.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature.
Abstract: The implementation of the Global Positioning System (GPS) network of satellites and the development of small, high-performance instrumentation to receive GPS signals have created an opportunity for active remote sounding of the Earth's atmosphere by radio occultation at comparatively low cost. A prototype demonstration of this capability has now been provided by the GPS/MET investigation. Despite using relatively immature technology, GPS/MET has been extremely successful [Ware et al., 1996; Kursinski et al., 1996], although there is still room for improvement. The aim of this paper is to develop a theoretical estimate of the spatial coverage, resolution, and accuracy that can be expected for atmospheric profiles derived from GPS occultations. We consider observational geometry, attenuation, and diffraction in defining the vertical range of the observations and their resolution. We present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature. Typically, the vertical resolution of the observations ranges from 0.5 km in the lower troposphere to 1.4 km in the middle atmosphere. Results indicate that useful profiles of refractivity can be derived from ∼60 km altitude to the surface with the exception of regions less than 250 m in vertical extent associated with high vertical humidity gradients. Above the 250 K altitude level in the troposphere, where the effects of water are negligible, sub-Kelvin temperature accuracy is predicted up to ∼40 km depending on the phase of the solar cycle. Geopotential heights of constant pressure levels are expected to be accurate to ∼10 m or better between 10 and 20 km altitudes. Below the 250 K level, the ambiguity between water and dry atmosphere refractivity becomes significant, and temperature accuracy is degraded. Deep in the warm troposphere the contribution of water to refractivity becomes sufficiently large for the accurate retrieval of water vapor given independent temperatures from weather analyses [Kursinski et al., 1995]. The radio occultation technique possesses a unique combination of global coverage, high precision, high vertical resolution, insensitivity to atmospheric particulates, and long-term stability. We show here how these properties are well suited for several applications including numerical weather prediction and long-term monitoring of the Earth's climate.

1,249 citations

Journal ArticleDOI
TL;DR: In this article, a prototype system has been developed to monitor the instantaneous global distribution of ionospheric irregularities, using the worldwide network of Globa Positioning System (GPS) receivers.
Abstract: A prototype system has been developed to monitor the instantaneous global distribution of ionospheric irregularities, using the worldwide network of Globa Positioning System (GPS) receivers. Case studies in this pape indicate that GPS receiver loss of lock of signal tracking may be associated with strong phase fluctuations. It is shown that a network-based GPS monitoring system will enable us to study the generation and evolution of ionospheric irregularities continuously around the globe under various solar and geophysical conditions, which is particularly suitable for studies of ionospheric storms, and for space weather research and applications.

701 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F.
Abstract: We use radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F The dependence of these irregularities on season, solar cycle, and magnetic activity can be explained as resulting from the corresponding effects on the evening and nighttime vertical drifts In the early night sector, the bottomside of the F layer is almost always unstable The evolution of the unstable layer is controlled by the history of the vertical drift velocity When the drift velocities are large enough, the necessary seeding mechanisms for the generation of strong spread F always appear to be present The threshold drift velocity for the generation of strong early night irregularities increases linearly with solar flux The geomagnetic control on the generation of spread F is season, solar cycle, and longitude dependent These effects can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance dynamo electric fields The occurrence of early night spread F decreases significantly during equinox solar maximum magnetically disturbed conditions due to disturbance dynamo electric fields which decrease the upward drift velocities near sunset The generation of late night spread F requires the reversal of the vertical velocity from downward to upward for periods longer than about half an hour These irregularities occur most often at ∼0400 local time when the prompt penetration and disturbance dynamo vertical drifts have largest amplitudes The occurrence of late night spread F is highest near solar minimum and decreases with increasing solar activity probably due to the large increase of the nighttime downward drifts with increasing solar flux

656 citations

Journal ArticleDOI
TL;DR: In this paper, a test of the generally accepted Rayleigh-Taylor (R-T) instability mechanism for equatorial spread F (ESF) is derived following the formalism of Haerendel (preprint, 1973) which takes into account the variations of physical parameters along geomagnetic flux tubes.
Abstract: In a test of the generally accepted Rayleigh-Taylor (R-T) instability mechanism for equatorial spread F (ESF) a linear instability growth rate γ RT is derived following the formalism of Haerendel (preprint, 1973) which takes into account the variations of physical parameters along geomagnetic flux tubes. The resulting form of γ RT extends the results of previous work by including direct dependencies on transequatorial neutral winds, zonal electric fields, vertical and horizontal ionospheric density gradients, the presence of an E region, and chemical recombination. Realistic atmospheric and ionospheric density model inputs are used for the first time to make quantitative calculations of R-T growth rates for a range of geophysical conditions. The key result of this study is that time/altitude domains having positive calculated instability growth rates are found to coincide with observed time/altitude patterns of ESF occurrence over both a monthly and a yearly time frame. This success in being able to model the climatological occurrence of ESF lends support to the physical model adopted for the instability mechanism and opens up new avenues of research into ESF predictability on a night-to-night and even an hour-to-hour basis.

490 citations

Journal ArticleDOI
TL;DR: A comprehensive review of dispersive Alfven waves in space and laboratory plasmas is presented in this article, where the authors show how the inclusion of ion gyroradius, parallel electron inertia, and finite frequency effects modify the Alfven wave properties.
Abstract: This paper presents a comprehensive review of dispersive Alfven waves in space and laboratory plasmas. We start with linear properties of Alfven waves and show how the inclusion of ion gyroradius, parallel electron inertia, and finite frequency effects modify the Alfven wave properties. Detailed discussions of inertial and kinetic Alfven waves and their polarizations as well as their relations to drift Alfven waves are presented. Up to date observations of waves and field parameters deduced from the measurements by Freja, Fast, and other spacecraft are summarized. We also present laboratory measurements of dispersive Alfven waves, that are of most interest to auroral physics. Electron acceleration by Alfven waves and possible connections of dispersive Alfven waves with ionospheric-magnetospheric resonator and global field-line resonances are also reviewed. Theoretical efforts are directed on studies of Alfven resonance cones, generation of dispersive Alfven waves, as well their nonlinear interactions with the background plasma and self-interaction. Such topics as the dispersive Alfven wave ponderomotive force, density cavitation, wave modulation/filamentation, and Alfven wave self-focusing are reviewed. The nonlinear dispersive Alfven wave studies also include the formation of vortices and their dynamics as well as chaos in Alfven wave turbulence. Finally, we present a rigorous evaluation of theoretical and experimental investigations and point out applications and future perspectives of auroral Alfven wave physics.

478 citations