scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The effect of geometry and bottom friction on local bed forms in a tidal embayment

01 Jul 2002-Continental Shelf Research (CONTINENTAL SHELF RESEARCH)-Vol. 22, Iss: 11, pp 1821-1833
TL;DR: In this paper, a 2DH idealized local morphodynamic model for a tidal channel was used to demonstrate that estuarine bars with typical length scales on the order of the tidal excursion length can develop as the result of a positive feedback between water motion, sediment transport and the sandy bottom.
About: This article is published in Continental Shelf Research.The article was published on 2002-07-01 and is currently open access. It has received 75 citations till now. The article focuses on the topics: Length scale & Suspended load.

Summary (3 min read)

1. Introduction

  • The geomorphology of semi-enclosed tidal embayments with a sandy bed often consists of a complex network of channels and shoals.
  • On the other hand, deeper embayments, e.g. those located in the Dutch and German Wadden Sea, are characterized by a fractal pattern of channels (cf. Cleveringa and Oost, 1999; Ehlers, 1988) which appear to scale with the length of the embayment.
  • Their model results apply to narrow, frictionally dominated tidal channels.
  • The results from the two approaches should qualitatively agree in the appropriate limits.
  • Here, the intermediate model will be compared with the results by Seminara and Tubino (1998).

2. Model description

  • The features studied in this paper have length scales which are small compared with the tidal wavelength, the embayment length and the length scale on which variations of the channel width occur.
  • Within the local model, tidal velocities are of the order of 1 m s 1: Since the amplitude of the sea surface elevations is assumed to be much smaller than the undisturbed water depth, the socalled rigid lid approximation can be adopted.
  • Using a procedure first proposed by Lorentz (1922), see also Zimmerman (1992), the non-linear bottom friction can be linearized in such a way that averaged over one tidal cycle the same amount of energy is dissipated in both formulations.
  • The first term on the right-hand side of Eq. (4) models the sediment pick-up function, and the second term the tendency of sediment to settle due to gravity effects.
  • This seems to be consistent with literature where it is suggested that the transport due to the bed slope terms cannot be neglected (see Parker, 1978; Talmon et al., 1995), even if suspended-load transport dominates.

3. Linear stability analysis

  • For realistic values of the parameters the 2D system of equations, as described in Section 2, allows for a morphodynamic equilibrium solution Weq ¼ ðu; v;rz;C; hÞeq; which is spatially uniform, i.e. they are independent of both the x- and the ycoordinate.
  • Here, ueq ¼ ðueq; 0Þ and u0 ¼ ðu0; v0Þ are the equilibrium and perturbed velocity vector.
  • The ratio of the tidal period and the morphologic timescale is typically of the order of 10 2–10 4: Since Eqs. (8a)–(8d) evolve on the tidal timescale, the bed perturbation h0 in these equations can be considered fixed.
  • The first two terms on the right-hand side of Eq. (13) give the contribution of the divergence of the advective sediment flux Fadv; while the last two terms model the divergences of fluxes due to diffusive processes (Fdiff ) and bedslope effects (Fbed), respectively.
  • The real part of the eigenvalue RðoÞ denotes the growth rate of the perturbation and IðoÞ=k its migration speed.

4. Results

  • In this section results from the local 2D channel model will be described.
  • Default values which are characteristic for the Western Scheldt will be used, see Table 1.
  • In the remainder of this paper, the authors will only consider advective modes, i.e. horizontal dispersion terms in the momentum and concentration equations are neglected ðm ¼.
  • This is justified since the ratio of dispersive to advective fluxes is of the order 10 1–10 3 for the bed form length scales that are considered in this paper.
  • This is also done in the model adopted by Seminara and Tubino (1998).

4.1. Advective instabilities for linear bottom friction

  • 0Þ: Fig. 3 shows the dimensionless growth rate as a function of the dimensionless longitudinal wavenumber k for various values of the lateral number n:.
  • This result is reminiscent from river morphodynamics where this mode is also found to be the most unstable one if bed slope effects are neglected (Callander, 1969).
  • For long waves, sediment transport is mainly driven by the residual velocity perturbation /u0S:.
  • These features will now be explained in more detail.
  • Expression (17) shows that the growth of long-wave perturbations is primarily governed by the residual perturbed velocity /u0S: Fig. 4 shows a typical example of the behaviour of this quantity as the longitudinal wavenumber k varies.

4.2. Bedslope effects

  • The most unstable mode now occurs for finite n: Eigenfunctions with high modenumber n (i.e. fast spatial oscillations in the lateral direction) are damped.
  • For friction values above the neutral curve, bedforms have positive growth rates.
  • The minimum of the neutral curve is referred to as the critical mode for the specified lateral modenumber n and is characterized by the critical wavenumber kcr and friction parameter values rcr:.
  • Since this destabilizing effect has its maximum value for a finite value of k (see Fig. 3), it is to be expected that both rcr and kcr have finite (non-zero) values.

4.3. Non-linear friction and the influence of channel width

  • The authors will extend their model by including non-linear bottom friction, which means that sb in Eq. (2) reads sb ¼ r#rjjujju; ð20Þ where #r ¼ 3pr=ð8UÞ follows from the Lorentz linearization procedure that was mentioned below Eq. (2).
  • The effect of non-linearity on the growth of bedforms can be inferred from Fig. 7 which shows the neutral curves for both linear and nonlinear friction.
  • Also, the most unstable wavenumber shifts towards a higher value, i.e. the critical mode occurs on a shorter longitudinal length scale.
  • The explicit dependence of the non-linear friction parameter #rjjujj on velocity thus yields a decrease of bottom friction above shallow (deep) parts of the channel.
  • So far, the authors have considered a socalled wide channel for which width and tidal excursion length are of the same order of magnitude.

5. Discussion and conclusions

  • The formation of bottom patterns that scale with the tidal excursion length has been studied within a 2D idealized model.
  • In the case that sediment diffusion can be neglected, this instability is mediated by advective processes, in particular through residual flows that arise from tide-topography interactions.
  • Bed slope effects act as a means to prevent the emergence of both longitudinal and lateral smallscale features.
  • All these discrepancies may in principle yield qualitatively different outcome.

Did you find this useful? Give us your feedback

Figures (11)
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an idealized model that describes the interaction of water motion, sediment transport and bed evolution in a semi-enclosed, rectangular basin, is developed and analyzed to explain the initial formation of channels and shoals.
Abstract: In many tidal embayments, complex patterns of channels and shoals are observed. To gain a better understanding of these features, an idealized model, that describes the interaction of water motion, sediment transport and bed evolution in a semi-enclosed, rectangular basin, is developed and analysed. To explain the initial formation of channels and shoals, two-dimensional perturbations superposed on a laterally uniform equilibrium bottom are studied. These perturbations evolve due to convergences of various residual suspended sediment fluxes: a diffusive flux, a flux related to the bed topography, an advective flux resulting from internally generated overtides and an advective flux due to externally prescribed overtides. For most combinations of these fluxes, perturbations start to grow if the bottom friction is strong enough. Their growth is mainly a result of convergences of diffusive and topographically induced sediment fluxes. Advective contributions due to internally generated overtides enhance this growth. If only diffusive sediment fluxes are considered, the underlying equilibrium is always unstable. This can be traced back to the depth dependence of the deposition parameter. Contrary to the results of previous idealized models, the channels and shoals always initiate in the shallow, landward areas. This is explained by the enhanced generation (compared to that in previous models) of frictional torques in shallow regions. The resulting initial channel–shoal formation compares well with results found in complex numerical model studies. The instability mechanism and the location of the initial formation of bottom patterns do not change qualitatively when varying parameters. Changes are mainly related to differences in the underlying equilibrium profile due to parameter variations.

13 citations

Journal ArticleDOI
TL;DR: In this article, the authors apply the morphodynamic model Delft3D to systematically test models of bar stratigraphy and preservation in confined basins with mixed fluvial and tidal currents.

13 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution process-based numerical model (Delft3D) is applied to generate a channel-shoal system in equilibrium and expose the equilibrium profile to variations in wave forcing and sea level rise (SLR).
Abstract: Intertidal shoals are vital components of estuaries. Tides, waves, and sediment supply shape the profile of estuarine shoals. Ensuring their sustainability requires an understanding of how such systems will react to sea level rise (SLR). In contrast to mudflats, sandy shoals have drawn limited attention in research. Inspired by a channel-shoal system in the Western Scheldt Estuary (Netherlands), this research investigates governing processes of the long-term morphodynamic evolution of intertidal estuarine sandy shoals across different timescales. We apply a high-resolution process-based numerical model (Delft3D) to generate a channel-shoal system in equilibrium and expose the equilibrium profile to variations in wave forcing and SLR. Combined tidal action and wave forcing initiate ridge formation at the seaward shoal edge, which slowly propagates landward until a linear equilibrium profile develops within 200 years. Model simulations in which forcing conditions have been varied to reproduce observations show that the bed is most dynamic near the channel-shoal interface. A decrease/increase in wave forcing causes the formation/erosion of small tidal levees at the shoal edge, which shows good resemblance to observed features. The profile recovers when regular wave forcing applies again. Sandy shoals accrete in response to SLR with a long (decades) bed-level adaptation lag eventually leading to intertidal area loss. This lag depends on the forcing conditions and is lowest near the channel and gradually increases landward. Adding mud makes the shoal more resilient to SLR. Our study suggests that processes near the channel-shoal interface are crucial to understanding the long-term morphodynamic development of sandy shoals.

12 citations


Cites background from "The effect of geometry and bottom f..."

  • ...An initial bed‐level perturbation triggers a positive morphodynamic feedback between currents and morphology leading to the emergence of large‐scale channel‐shoal patterns (Coeveld et al., 2003; Hibma et al., 2003; Schramkowski et al., 2002; Seminara & Tubino, 2001)....

    [...]

Journal ArticleDOI
TL;DR: A Python tool that predicts the hydrodynamics, bed elevation and the patterns of channels and bars in mere seconds, based on a combination of empirical relations derived from natural estuaries, including a novel predictor for cross-sectional depth distributions.
Abstract: Hydromorphological data for many estuaries worldwide is scarce and usually limited to offshore tidal amplitude and remotely-sensed imagery. In many projects, information about morphology and intertidal area is needed to assess the effects of human interventions and rising sea-level on the natural depth distribution and on changing habitats. Habitat area depends on the spatial pattern of intertidal area, inundation time, peak flow velocities and salinity. While numerical models can reproduce these spatial patterns fairly well, their data need and computational costs are high and for each case a new model must be developed. Here, we present a Python tool that includes a comprehensive set of relations that predicts the hydrodynamics, bed elevation and the patterns of channels and bars in mere seconds. Predictions are based on a combination of empirical relations derived from natural estuaries, including a novel predictor for cross-sectional depth distributions, which is dependent on the along-channel width profile. Flow velocity, an important habitat characteristic, is calculated with a new correlation between depth below high water level and peak tidal flow velocity, which was based on spatial numerical modelling. Salinity is calculated from estuarine geometry and flow conditions. The tool only requires an along-channel width profile and tidal amplitude, making it useful for quick assessments, for example of potential habitat in ecology, when only remotely-sensed imagery is available.

11 citations

Dissertation
08 Dec 2014
TL;DR: In this article, the impact of river discharge, tides and their interaction on long-term estuarine morphodynamics was explored using 1D and 2D process-based models.
Abstract: Estuarine morphodynamics are of broad importance to estuaries’ functions related to navigation, human settlement and ecosystems. Inspired by the Yangtze River estuary (YRE), this study aims to explore the impact of river discharge, tides and their interaction on long-term estuarine morphodynamics. Use is made of 1D and 2D process-based models. In first instance we focus on purely hydrodynamic characteristics in a 560 km long basin. We analyze the non-stationary river tides in the YRE by harmonic analysis and continuous wavelet transformation which reveals a wide range of subtidal variations and non-linear modulation by varying river discharges. An intermediate river discharge could be defined at which the amplitudes of the internally generated overtides and compound tides reach maxima. Based on these hydrodynamic insights we conduct long-term (millennia time scale) morphodynamic simulations in schematized long basins. Vanishing spatial gradients in tidal residual sediment transport indicate an approach towards morphodynamic equilibrium. Morphodynamic equilibrium is also reached in case of a seasonally varying river discharge, which is reflected by a balance between erosion and accretion during low and high river discharge periods, respectively. River flow supplies sediment, accelerates ebb currents, and alters tidal asymmetries. Each of these processes has its own effects on tidal residual transport and morphodynamics. For example, the interaction between a mean flow (i.e., Stokes return flow or river flow) and tidal currents induces significant tidal residual sediment transport which explains net ebb transport dominance in the presence of a flood tidal asymmetry. A larger river discharge does not necessarily lead to deeper equilibrium bed profiles. An intermediate river discharge is found which induces largest residual sediment transport gradients along the estuary leading to deepest equilibrium bed profile. Quantification of this medium river discharge is case dependent because of the non-linearities involved. The 2D model approach applied in a large scale fluvio-deltaic system reveal river, estuarine and deltaic types of morphodynamic features, such as alternating sand bars, meandering channels inside the estuary and more elongated sand bars and distributary channels in the mouth zone and delta. The cross-sectionally averaged depth of the 2D model responds in a similar way to increased river discharge as a 1D model. Furthermore, a high river discharge induces ebb transport dominance, restricts development of flood channels and prolongs meander wavelength. In summary, this research unveils the fundamental effects of tidal asymmetries, river discharge, and river-tide interaction in governing residual sediment transport and associated long-term estuarine morphodynamics under combined river and tidal forcing.

11 citations


Cites background from "The effect of geometry and bottom f..."

  • ...Studies on the morphodynamic behavior in relatively shorter (<100 km) basins are characterized by overall concave profiles due to residual sediment transport divergence (outward transport on both sides of the focus) (Friedrichs and Aubrey, 1994; Lanzoni and Seminara, 2002; Hibma et al., 2003b; Schuttelaars and de Swart, 1996, 2000; Schramkowski et al., 2002; van der Wegen and Roelvink, 2008)....

    [...]

References
More filters
Book
01 Jan 1993

1,962 citations


Additional excerpts

  • ...The evolution equation for C reads (Van Rijn, 1993) Ct þ ðuC mCxÞx þ ðvC mCyÞy ¼ S aðu2 þ v2Þ gC; ð4Þ where m denotes the horizontal coefficient for sediment diffusion and S the difference between erosion and sedimentation at the top of the active layer....

    [...]

Book
06 May 1986
TL;DR: The physical concepts governing sediment movement in the sea with the minimum of mathematics have been established in this paper, with a focus on the measurement and prediction of sea transportation of sediment, and detailed physical processes within regional sediment circulation patterns.
Abstract: The movement of mud, sand and gravel on the continental shelf, in the nearshore zone, on beaches and in estuaries can be significant in economic and environmental terms. From ease of navigation, to liability to flooding, from sewage and waste disposal to fish populations changes in the deposition and erosion of sedimentary material can have an effect on man's activities in the shoreline zone. Coastal and Estuarine Sediment Dynamics discusses such movements using the different viewpoints of the marine geologists, the oceanographer and the engineer, and integrates them into an essentially multidisciplinary treatment. Quantified descriptions of the physical processes causing sedimentary movement and response are emphasised in the context of natural systems. Among the features included in this book are: Establishment of physical concepts governing sediment movement in the sea with the minimum of mathematics; Essential background material and up-to- date research results; Information on the measurement and prediction of sea transportation of sediment; Detailed physical processes within regional sediment circulation patterns.

981 citations


Additional excerpts

  • ...The adopted values of the coefficients a ðOð10 5210 7Þ s m 1Þ and g ðOð10 3210 2Þ s 1Þ are representative for fine sand (see e.g. also Dyer, 1986)....

    [...]

Book
01 Jan 1994
TL;DR: In this paper, the effects of space discretization on wave propagation are investigated and a detailed treatment of boundary conditions is given. But the results are limited to three-dimensional shallow-water flows.
Abstract: Preface. 1. Shallow-water flows. 2. Equations. 3. Some properties. 4. Behaviour of solutions. 5. Boundary conditions. 6. Discretization in space. 7. Effect of space discretization on wave propagation. 8. Time integration methods. 9. Effects of time discretization on wave propagation. 10. Numerical treatment of boundary conditions. 11. Three-dimensional shallow-water flow. List of notations. References. Index.

527 citations


"The effect of geometry and bottom f..." refers background in this paper

  • ...The water motion is described by the depthaveraged shallow water equations (see Vreugdenhil, 1994)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors formulated a fluid flow model with a series of approximate but reasonable assumptions for straight channels with non-cohesive sand and silt banks and showed that the model can be applied to a more general treatment of natural rivers, which would include various complicating factors such as meandering, sediment sorting and seepage.
Abstract: Rivers and canals with perimeters composed of non-cohesive sand and silt have self-formed active beds and banks. They thus provide a most interesting fluid flow problem, for which one must determine the container as well as the flow. If bed load alone occurs across the perimeter of a wide channel, gravity will pull particles down the lateral slope of the banks; bank erosion is accomplished and the channel widens. In order to maintain equilibrium, this export of material from the banks must be countered by an import of sediment from the channel centre.The mechanism postulated for this import is lateral diffusion of suspended sediment, which overloads the flow near the banks and causes deposition. The model is formulated analytically with the aid of a series of approximate but reasonable assumptions. Singular perturbation techniques are used to define the channel geometry and obtain rational regime relations for straight channels. A comparison with data lends credence to the model.It is hoped that a first step has been made towards a more general treatment, which would include various complicating factors that are important features of natural rivers but are not essential to the maintenance of channel width. Among these factors are meandering, sediment sorting and seepage.

288 citations


"The effect of geometry and bottom f..." refers result in this paper

  • ...This seems to be consistent with literature where it is suggested that the transport due to the bed slope terms cannot be neglected (see Parker, 1978; Talmon et al., 1995), even if suspended-load transport dominates....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effect of a sloping bed on the direction of sediment transport is determined by conducting bed-levelling experiments, and a distinction is made between laboratory conditions and natural rivers.
Abstract: Laboratory experiments have been conducted to provide data for modelling the direction of sediment transport on a transverse sloping alluvial bed. Conditions with prevailing bed-load transport, and conditions in which a significant part of the bed material is transported as suspended-load are studied. The effect of a sloping bed on the direction of sediment transport is determined by conducting bed-levelling experiments. Comparison of the results with data of curved flume experiments and experience gained with numerical computation of the bed topography in natural rivers yields the conclusion that, at least for bed-load transport, a distinction should be made between laboratory conditions and natural rivers. For conditions with suspended sediment transport the transverse slope effect can not be modelled identical as for bed-load transport.

262 citations


"The effect of geometry and bottom f..." refers result in this paper

  • ...This seems to be consistent with literature where it is suggested that the transport due to the bed slope terms cannot be neglected (see Parker, 1978; Talmon et al., 1995), even if suspended-load transport dominates....

    [...]

Frequently Asked Questions (1)
Q1. What are the contributions mentioned in the paper "The effect of geometry and bottom friction on local bed forms in a tidal embayment" ?

In the case that the width is much smaller than the tidal excursion length and non-linear bottom friction is used, there is good qualitative agreement with results from 3D models reported in literature which were applied to the same parameter regime.