scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Effect of Ions on the Self-Diffusion of Water. I. Concentration Dependence

01 Jun 1965-The Journal of Physical Chemistry (American Chemical Society)-Vol. 69, Iss: 6, pp 2001-2011
About: This article is published in The Journal of Physical Chemistry.The article was published on 1965-06-01. It has received 148 citations till now. The article focuses on the topics: Diffusion.
Citations
More filters
Journal ArticleDOI
24 Sep 1982-Science
TL;DR: Osmolyte compatibility is proposed to result from the absence of osmolytes interactions with substrates and cofactors, and the nonperturbing or favorable effects of oSMolytes on macromolecular-solvent interactions.
Abstract: Striking convergent evolution is found in the properties of the organic osmotic solute (osmolyte) systems observed in bacteria, plants, and animals Polyhydric alcohols, free amino acids and their derivatives, and combinations of urea and methylamines are the three types of osmolyte systems found in all water-stressed organisms except the halobacteria The selective advantages of the organic osmolyte systems are, first, a compatibility with macromolecular structure and function at high or variable (or both) osmolyte concentrations, and, second, greatly reduced needs for modifying proteins to function in concentrated intracellular solutions Osmolyte compatibility is proposed to result from the absence of osmolyte interactions with substrates and cofactors, and the nonperturbing or favorable effects of osmolytes on macromolecular-solvent interactions

3,706 citations

Journal ArticleDOI
TL;DR: The first general, detailed qualitative molecular mechanism for the origins of ion-specific (Hofmeister) effects on the surface potential difference at an air-water interface is proposed; this mechanism suggests a simple model for the behaviour of water at all interfaces, regardless of whether the non-aqueous component is neutral or charged, polar or non-polar.
Abstract: Starting from known properties of non-specific salt effects on the surface tension at an air–water interface, we propose the first general, detailed qualitative molecular mechanism for the origins of ion-specific (Hofmeister) effects on the surface potential difference at an air–water interface; this mechanism suggests a simple model for the behaviour of water at all interfaces (including water–solute interfaces), regardless of whether the non-aqueous component is neutral or charged, polar or non-polar Specifically, water near an isolated interface is conceptually divided into three layers, each layer being 1 water-molecule thick We propose that the solute determines the behaviour of the adjacent first interfacial water layer ( I 1 ); that the bulk solution determines the behaviour of the third interfacial water layer ( I 3 ), and that both I 1 and I 3 compete for hydrogen-bonding interactions with the intervening water layer ( I 2 ), which can be thought of as a transition layer The model requires that a polar kosmotrope (polar water-structure maker) interact with I 1 more strongly than would bulk water in its place; that a chaotrope (water-structure breaker) interact with I 1 somewhat less strongly than would bulk water in its place; and that a non-polar kosmotrope (non-polar water-structure maker) interact with I 1 much less strongly than would bulk water in its place We introduce two simple new postulates to describe the behaviour of I 1 water molecules in aqueous solution The first, the ‘relative competition’ postulate, states that an I 1 water molecule, in maximizing its free energy (—δG), will favour those of its highly directional polar (hydrogen-bonding) interactions with its immediate neighbours for which the maximum pairwise enthalpy of interaction (—δ H ) is greatest; that is, it will favour the strongest interactions We describe such behaviour as ‘compliant’, since an I 1 water molecule will continually adjust its position to maximize these strong interactions Its behaviour towards its remaining immediate neighbours, with whom it interacts relatively weakly (but still favourably), we describe as ‘recalcitrant’, since it will be unable to adjust its position to maximize simultaneously these interactions The second, the ‘charge transfer’ postulate, states that the strong polar kosmotrope–water interaction has at least a small amount of covalent character, resulting in significant transfer of charge from polar kosmotropes to water–especially of negative charge from Lewis bases (both neutral and anionic); and that the water-structuring effect of polar kosmotropes is caused not only by the tight binding (partial immobilization) of the immediately adjacent ( I 1 ) water molecules, but also by an attempt to distribute among several water molecules the charge transferred from the solute When extensive, cumulative charge transfer to solvent occurs, as with macromolecular polyphosphates, the solvation layer (the layer of solvent whose behaviour is determined by the solute) can become up to 5- or 6-water-molecules thick We then use the ‘relative competition’ postulate, which lends itself to simple diagramming, in conjunction with the ‘charge transfer’ postulate to provide a new, startlingly simple and direct qualitative explanation for the heat of dilution of neutral polar solutes and the temperature dependence of relative viscosity of neutral polar solutes in aqueous solution This explanation also requires the new and intriguing general conclusion that as the temperature of aqueous solutions is lowered towards o °C, solutes tend to acquire a non-uniform distribution in the solution, becoming increasingly likely to cluster 2 water molecules away from other solutes and surfaces (the driving force for this process being the conversion of transition layer water to bulk water) The implications of these conclusions for understanding the mechanism of action of general (gaseous) anaesthetics and other important interfacial phenomena are then addressed

1,468 citations

Journal ArticleDOI
TL;DR: The original article to which this Erratum refers was published in Journal of Chemical Technology and Biotechnology (81: 877–891).
Abstract: The original article to which this Erratum refers was published in Journal of Chemical Technology and Biotechnology (81: 877–891).

172 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental situation is briefly described and an estimate is made of the best values at 298.15 K and atmospheric pressure, which is used to judge the results of work on the temperature and pressure dependence of D.
Abstract: Results on tracer and self-diffusion coefficients D of the various isotopic species of water as reported in the literature vary widely. The experimental situation is briefly described and an estimate is made of the best values at 298.15 K and atmospheric pressure. The conclusions are used to judge the results of work on the temperature and pressure dependence of D. A brief account on isotopic effects on tracer and self diffusion in water is given.

161 citations

Journal ArticleDOI
TL;DR: The comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali and halide ions along with either the SPC or theSPC/E water models.
Abstract: The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hunenberger, J. Chem. Phys. 124, 224501 (2006)10.1529/biophysj.106.083667; M. M. Reif and P. H. Hunenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion–solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) i...

144 citations