scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The effect of RAD allele dropout on the estimation of genetic variation within and between populations

TL;DR: It is found that ADO tends to overestimate genetic variation both within and between populations, and possible solutions to filter the most problematic cases of ADO using read coverage to detect markers with a large excess of null alleles are discussed.
Abstract: Inexpensive short-read sequencing technologies applied to reduced representation genomes is revolutionizing genetic research, especially population genetics analysis, by allowing the genotyping of massive numbers of single-nucleotide polymorphisms (SNP) for large numbers of individuals and populations. Restriction site-associated DNA (RAD) sequencing is a recent technique based on the characterization of genomic regions flanking restriction sites. One of its potential drawbacks is the presence of polymorphism within the restriction site, which makes it impossible to observe the associated SNP allele (i.e. allele dropout, ADO). To investigate the effect of ADO on genetic variation estimated from RAD markers, we first mathematically derived measures of the effect of ADO on allele frequencies as a function of different parameters within a single population. We then used RAD data sets simulated using a coalescence model to investigate the magnitude of biases induced by ADO on the estimation of expected heterozygosity and F(ST) under a simple demographic model of divergence between two populations. We found that ADO tends to overestimate genetic variation both within and between populations. Assuming a mutation rate per nucleotide between 10(-9) and 10(-8), this bias remained low for most studied combinations of divergence time and effective population size, except for large effective population sizes. Averaging F(ST) values over multiple SNPs, for example, by sliding window analysis, did not correct ADO biases. We briefly discuss possible solutions to filter the most problematic cases of ADO using read coverage to detect markers with a large excess of null alleles.
Citations
More filters
Journal ArticleDOI
TL;DR: The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.
Abstract: Massively parallel short-read sequencing technologies, coupled with powerful software platforms, are enabling investigators to analyse tens of thousands of genetic markers. This wealth of data is rapidly expanding and allowing biological questions to be addressed with unprecedented scope and precision. The sizes of the data sets are now posing significant data processing and analysis challenges. Here we describe an extension of the Stacks software package to efficiently use genotype-by-sequencing data for studies of populations of organisms. Stacks now produces core population genomic summary statistics and SNP-by-SNP statistical tests. These statistics can be analysed across a reference genome using a smoothed sliding window. Stacks also now provides several output formats for several commonly used downstream analysis packages. The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.

2,958 citations

Journal ArticleDOI
28 Feb 2014-PLOS ONE
TL;DR: The tassel-gbs pipeline, designed for the efficient processing of raw GBS sequence data into SNP genotypes, is described and benchmark it based upon a large scale, species wide analysis in maize, where the average error rate was reduced to 0.0042.
Abstract: Genotyping by sequencing (GBS) is a next generation sequencing based method that takes advantage of reduced representation to enable high throughput genotyping of large numbers of individuals at a large number of SNP markers. The relatively straightforward, robust, and cost-effective GBS protocol is currently being applied in numerous species by a large number of researchers. Herein we describe a bioinformatics pipeline, tassel-gbs, designed for the efficient processing of raw GBS sequence data into SNP genotypes. The tassel-gbs pipeline successfully fulfills the following key design criteria: (1) Ability to run on the modest computing resources that are typically available to small breeding or ecological research programs, including desktop or laptop machines with only 8–16 GB of RAM, (2) Scalability from small to extremely large studies, where hundreds of thousands or even millions of SNPs can be scored in up to 100,000 individuals (e.g., for large breeding programs or genetic surveys), and (3) Applicability in an accelerated breeding context, requiring rapid turnover from tissue collection to genotypes. Although a reference genome is required, the pipeline can also be run with an unfinished “pseudo-reference” consisting of numerous contigs. We describe the tassel-gbs pipeline in detail and benchmark it based upon a large scale, species wide analysis in maize (Zea mays), where the average error rate was reduced to 0.0042 through application of population genetic-based SNP filters. Overall, the GBS assay and the tassel-gbs pipeline provide robust tools for studying genomic diversity.

1,315 citations


Cites background from "The effect of RAD allele dropout on..."

  • ...However, there might still be some subtle biases in either pipeline, caused by factors such as null alleles [63,64], alignment to the reference, and the use of inbreds only (rather than the full set of samples) to filter SNPs for FIT....

    [...]

Journal ArticleDOI
TL;DR: This Review provides a comprehensive discussion of RADseq methods to aid researchers in choosing among the many different approaches and avoiding erroneous scientific conclusions from RADseq data, a problem that has plagued other genetic marker types in the past.
Abstract: High-throughput techniques based on restriction site-associated DNA sequencing (RADseq) are enabling the low-cost discovery and genotyping of thousands of genetic markers for any species, including non-model organisms, which is revolutionizing ecological, evolutionary and conservation genetics. Technical differences among these methods lead to important considerations for all steps of genomics studies, from the specific scientific questions that can be addressed, and the costs of library preparation and sequencing, to the types of bias and error inherent in the resulting data. In this Review, we provide a comprehensive discussion of RADseq methods to aid researchers in choosing among the many different approaches and avoiding erroneous scientific conclusions from RADseq data, a problem that has plagued other genetic marker types in the past.

1,102 citations

Journal ArticleDOI
TL;DR: This Review demonstrates the breadth of questions that are being addressed by Pool-seq but also discusses its limitations and provides guidelines for users.
Abstract: The analysis of polymorphism data is becoming increasingly important as a complementary tool to classical genetic analyses. Nevertheless, despite plunging sequencing costs, genomic sequencing of individuals at the population scale is still restricted to a few model species. Whole-genome sequencing of pools of individuals (Pool-seq) provides a cost-effective alternative to sequencing individuals separately. With the availability of custom-tailored software tools, Pool-seq is being increasingly used for population genomic research on both model and non-model organisms. In this Review, we not only demonstrate the breadth of questions that are being addressed by Pool-seq but also discuss its limitations and provide guidelines for users.

642 citations

Journal ArticleDOI
TL;DR: The R package pcadapt performs genome scans to detect genes under selection based on population genomic data and is compared to other computer programs for genome scans, finding that pcadapt and hapflk are the most powerful in scenarios of population divergence and range expansion.
Abstract: The R package pcadapt performs genome scans to detect genes under selection based on population genomic data. It assumes that candidate markers are outliers with respect to how they are related to population structure. Because population structure is ascertained with principal component analysis, the package is fast and works with large-scale data. It can handle missing data and pooled sequencing data. By contrast to population-based approaches, the package handle admixed individuals and does not require grouping individuals into populations. Since its first release, pcadapt has evolved in terms of both statistical approach and software implementation. We present results obtained with robust Mahalanobis distance, which is a new statistic for genome scans available in the 2.0 and later versions of the package. When hierarchical population structure occurs, Mahalanobis distance is more powerful than the communality statistic that was implemented in the first version of the package. Using simulated data, we compare pcadapt to other computer programs for genome scans (BayeScan, hapflk, OutFLANK, sNMF). We find that the proportion of false discoveries is around a nominal false discovery rate set at 10% with the exception of BayeScan that generates 40% of false discoveries. We also find that the power of BayeScan is severely impacted by the presence of admixed individuals whereas pcadapt is not impacted. Last, we find that pcadapt and hapflk are the most powerful in scenarios of population divergence and range expansion. Because pcadapt handles next-generation sequencing data, it is a valuable tool for data analysis in molecular ecology.

594 citations

References
More filters
Journal Article
TL;DR: Copyright (©) 1999–2012 R Foundation for Statistical Computing; permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and permission notice are preserved on all copies.
Abstract: Copyright (©) 1999–2012 R Foundation for Statistical Computing. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team.

272,030 citations

Journal ArticleDOI
TL;DR: Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
Abstract: Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or “transition” type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or “transversion” type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = — (1/2) ln {(1 — 2P — Q) }. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = — (1/2) ln (1 — 2P — Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.

26,016 citations


"The effect of RAD allele dropout on..." refers background or methods in this paper

  • ...(K2P) model of DNA evolution (Kimura 1980) with a fraction of constant sites (those that do not mutate)...

    [...]

  • ...…rate per nucleotide (l) was sampled from a uniform distribution [10 9–10 8], and we assumed a Kimura two-parameters (K2P) model of DNA evolution (Kimura 1980) with a fraction of constant sites (those that do not mutate) fixed to 10% and the shape parameter of the Gamma distribution of…...

    [...]

Journal ArticleDOI
TL;DR: The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973).
Abstract: This journal frequently contains papers that report values of F-statistics estimated from genetic data collected from several populations. These parameters, FST, FIT, and FIS, were introduced by Wright (1951), and offer a convenient means of summarizing population structure. While there is some disagreement about the interpretation of the quantities, there is considerably more disagreement on the method of evaluating them. Different authors make different assumptions about sample sizes or numbers of populations and handle the difficulties of multiple alleles and unequal sample sizes in different ways. Wright himself, for example, did not consider the effects of finite sample size. The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973). We start with the parameters and construct appropriate estimators for them, rather than beginning the discussion with various data functions. The extension of Cockerham's work to multiple alleles and loci will be made explicit, and the use of jackknife procedures for estimating variances will be advocated. All of this may be regarded as an extension of a recent treatment of estimating the coancestry coefficient to serve as a mea-

17,890 citations


"The effect of RAD allele dropout on..." refers methods in this paper

  • ...When an SNP was present, its genetic variation was summarized within population by computing the expected heterozygosity (He; Nei 1977) for each population and between populations by computing unbiased estimates of FST as described by Weir & Cockerham (1984) (see also Weir 1996, eqn 5.2)....

    [...]

Journal ArticleDOI
13 Oct 2008-PLOS ONE
TL;DR: The sequencing of restriction-site associated DNA (RAD) tags was described, which identified more than 13,000 SNPs, and three traits in two model organisms were mapped, using less than half the capacity of one Illumina sequencing run.
Abstract: Single nucleotide polymorphism (SNP) discovery and genotyping are essential to genetic mapping. There remains a need for a simple, inexpensive platform that allows high-density SNP discovery and genotyping in large populations. Here we describe the sequencing of restriction-site associated DNA (RAD) tags, which identified more than 13,000 SNPs, and mapped three traits in two model organisms, using less than half the capacity of one Illumina sequencing run. We demonstrated that different marker densities can be attained by choice of restriction enzyme. Furthermore, we developed a barcoding system for sample multiplexing and fine mapped the genetic basis of lateral plate armor loss in threespine stickleback by identifying recombinant breakpoints in F2 individuals. Barcoding also facilitated mapping of a second trait, a reduction of pelvic structure, by in silico re-sorting of individuals. To further demonstrate the ease of the RAD sequencing approach we identified polymorphic markers and mapped an induced mutation in Neurospora crassa. Sequencing of RAD markers is an integrated platform for SNP discovery and genotyping. This approach should be widely applicable to genetic mapping in a variety of organisms.

3,112 citations


"The effect of RAD allele dropout on..." refers background or methods in this paper

  • ...Deep sequencing of restriction site associated DNA (RAD-seq) borrows from the RRL strategy (Baird et al. 2008)....

    [...]

  • ...across a wide range of organisms and questions ranging from genetic map construction and mapping of genes underlying traits of interest (Baird et al. 2008; Baxter et al. 2011) to population genomics (Hohenlohe et al....

    [...]

  • ...…2012 John Wiley & Sons Ltd across a wide range of organisms and questions ranging from genetic map construction and mapping of genes underlying traits of interest (Baird et al. 2008; Baxter et al. 2011) to population genomics (Hohenlohe et al. 2010) and phylogeography (Emerson et al. 2010)....

    [...]

  • ...We considered an RAD locus as generated by the standard protocol of Baird et al. (2008): such a RAD locus includes a sequence of L bp long associated with a single restriction site of length S bp....

    [...]