scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The effect of wall heating on instability of channel flow

25 Apr 2007-Journal of Fluid Mechanics (Cambridge University Press)-Vol. 577, pp 417-442
TL;DR: In this paper, the effect of wall heating or cooling on the linear, transient and secondary growth of instability in channel flow is investigated. But the authors focus on the effects of the wall heating on channel flow.
Abstract: A comprehensive study of the effect of wall heating or cooling on the linear, transient and secondary growth of instability in channel flow is conducted. The effect of viscosity stratification, heat diffusivity and of buoyancy are estimated separately, with some unexpected results. From linear stability results, it has been accepted that heat diffusivity does not affect stability. However, we show that realistic Prandtl numbers cause a transient growth of disturbances that is an order of magnitude higher than at zero Prandtl number. Buoyancy, even at fairly low levels, gives rise to high levels of subcritical energy growth. Unusually for transient growth, both of these are spanwise-independent and not in the form of streamwise vortices. At moderate Grashof numbers, exponential growth dominates, with distinct Poiseuille–Rayleigh–Benard and Tollmien–Schlichting modes for Grashof numbers up to ∼ 25 000, which merge thereafter. Wall heating has a converse effect on the secondary instability compared to the primary instability, destabilizing significantly when viscosity decreases towards the wall. It is hoped that the work will motivate experimental and numerical efforts to understand the role of wall heating in the control of channel and pipe flows.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review highlights the profound and unexpected ways in which viscosity varying in space and time can affect flow and the most striking manifestations are through alterations of flow stability, as established in model shear flows and industrial applications.
Abstract: This review highlights the profound and unexpected ways in which viscosity varying in space and time can affect flow. The most striking manifestations are through alterations of flow stability, as established in model shear flows and industrial applications. Future studies are needed to address the important effect of viscosity stratification in such diverse environments as Earth's core, the Sun, blood vessels, and the re-entry of spacecraft.

231 citations

Journal ArticleDOI
TL;DR: In this article, the effect of viscosity stratification on the turbulence statistics and skin friction was investigated, and an empirical relation for temperaturedependent viscosities for water was adopted.
Abstract: Direct numerical simulations (DNS) of turbulent boundary layers over isothermally heated walls were performed, and the effect of viscosity stratification on the turbulence statistics and skin friction were investigated. An empirical relation for temperaturedependent viscosity for water was adopted. Based on the free-stream temperature (30 C), two wall temperatures (70 C and 99 C) were selected. In the heated flows, the turbulence energy diminishes in the buffer layer, but increases near the wall. The reduction in turbulence kinetic energy in the buffer layer is accompanied by smaller levels of Reynolds shear stresses and, hence, weaker turbulence production. The enhanced turbulence energy near the wall is attributed to enhanced transfer of energy via additional diffusion-like terms due to the viscosity stratification. Despite the lower fluid viscosity near the wall, dissipation is also increased owing to the augmented nearwall fine-scale motion. Wall heating results in reduction in the skin-friction coefficient by up to 26 %. An evaluation of the different contributions to the skin friction demonstrates that drag reduction is primarily due to the changes in the Reynolds shear stresses across the boundary layer. Quadrant and octant analyses showed that ejections (Q2) and sweeps (Q4) are significantly reduced, a result further supported by an examination of outer vortical structures from linear stochastic estimation of the ejection events and spanwise vortices.

104 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed an extensive campaign based on pseudo-spectral direct numerical simulations of turbulent water channel flow in the Reynolds number parameter space and found that turbulence modifications are associated with changes in the rate at which energy is produced and dissipated near the walls.
Abstract: In this work, we run a numerical experiment to study the behaviour of incompressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulence. We present a systematic analysis of variable-viscosity effects, isolated from gravity, with relevance for aerospace cooling/heating applications. We performed an extensive campaign based on pseudo-spectral direct numerical simulations of turbulent water channel flow in the Reynolds number parameter space. We considered constant temperature boundary conditions and different temperature gradients between the channel walls. Results indicate that average and turbulent fields undergo significant variations. Compared with isothermal flow with constant viscosity, we observe that turbulence is promoted in the cold side of the channel, characterized by viscosity locally higher than the mean: in the range of the examined Reynolds numbers and in absence of gravity, higher values of viscosity determine an increase of turbulent kinetic energy, whereas a decrease of turbulent kinetic energy is determined at the hot wall. Examining in detail the turbulent kinetic energy budget, we find that turbulence modifications are associated with changes in the rate at which energy is produced and dissipated near the walls: specifically, at the hot wall (respectively cold wall) production decreases (respectively increases) while dissipation increases (respectively decreases).

103 citations

Journal ArticleDOI
TL;DR: In this article, the linear stability of shear-thinning fluids modelled by the Carreau rheological law is investigated and a viscosity stratification is considered as a possible mean to postpone the onset of transition to turbulence in channel flow.
Abstract: A viscosity stratification is considered as a possible mean to postpone the onset of transition to turbulence in channel flow. As a prototype problem, we focus on the linear stability of shear-thinning fluids modelled by the Carreau rheological law. To assess whether there is stabilization and by how much, it is important both to account for a viscosity disturbance in the perturbation equations, and to employ an appropriate viscosity scale in the definition of the Reynolds number. Failure to do so can yield qualitatively and quantitatively incorrect conclusions. Results are obtained for both exponentially and algebraically growing disturbances, demonstrating that a viscous stratification is a viable approach to maintain laminarity.

76 citations

Journal ArticleDOI
TL;DR: This review article provides a detailed review of depth-resolving modeling strategies, including direct numerical simulations (DNS), large-eddy simulations (LES), and Reynolds-averaged Navier–Stokes (RANS) simulations.
Abstract: In this review article, we discuss recent progress with regard to modeling gravity-driven, high Reynolds number currents, with the emphasis on depth-resolving, high-resolution simulations. The initial sections describe new developments in the conceptual modeling of such currents for the purpose of identifying the Froude number–current height relationship, in the spirit of the pioneering work by von Karman and Benjamin. A brief introduction to depth-averaged approaches follows, including box models and shallow water equations. Subsequently, we provide a detailed review of depth-resolving modeling strategies, including direct numerical simulations (DNS), large-eddy simulations (LES), and Reynolds-averaged Navier–Stokes (RANS) simulations. The strengths and challenges associated with these respective approaches are discussed by highlighting representative computational results obtained in recent years.

76 citations

References
More filters
01 Jan 1992

12,636 citations

Book
01 Jan 1987
TL;DR: Spectral methods have been widely used in simulation of stability, transition, and turbulence as discussed by the authors, and their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed.
Abstract: Fundamental aspects of spectral methods are introduced. Recent developments in spectral methods are reviewed with an emphasis on collocation techniques. Their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed. The key role that these methods play in the simulation of stability, transition, and turbulence is brought out. A perspective is provided on some of the obstacles that prohibit a wider use of these methods, and how these obstacles are being overcome.

4,632 citations

Book
28 Dec 2000
TL;DR: In this article, the authors present an approach to the Viscous Initial Value Problem with the objective of finding the optimal growth rate and the optimal response to the initial value problem.
Abstract: 1 Introduction and General Results.- 1.1 Introduction.- 1.2 Nonlinear Disturbance Equations.- 1.3 Definition of Stability and Critical Reynolds Numbers.- 1.3.1 Definition of Stability.- 1.3.2 Critical Reynolds Numbers.- 1.3.3 Spatial Evolution of Disturbances.- 1.4 The Reynolds-Orr Equation.- 1.4.1 Derivation of the Reynolds-Orr Equation.- 1.4.2 The Need for Linear Growth Mechanisms.- I Temporal Stability of Parallel Shear Flows.- 2 Linear Inviscid Analysis.- 2.1 Inviscid Linear Stability Equations.- 2.2 Modal Solutions.- 2.2.1 General Results.- 2.2.2 Dispersive Effects and Wave Packets.- 2.3 Initial Value Problem.- 2.3.1 The Inviscid Initial Value Problem.- 2.3.2 Laplace Transform Solution.- 2.3.3 Solutions to the Normal Vorticity Equation.- 2.3.4 Example: Couette Flow.- 2.3.5 Localized Disturbances.- 3 Eigensolutions to the Viscous Problem.- 3.1 Viscous Linear Stability Equations.- 3.1.1 The Velocity-Vorticity Formulation.- 3.1.2 The Orr-Sommerfeld and Squire Equations.- 3.1.3 Squire's Transformation and Squire's Theorem.- 3.1.4 Vector Modes.- 3.1.5 Pipe Flow.- 3.2 Spectra and Eigenfunctions.- 3.2.1 Discrete Spectrum.- 3.2.2 Neutral Curves.- 3.2.3 Continuous Spectrum.- 3.2.4 Asymptotic Results.- 3.3 Further Results on Spectra and Eigenfunctions.- 3.3.1 Adjoint Problem and Bi-Orthogonality Condition.- 3.3.2 Sensitivity of Eigenvalues.- 3.3.3 Pseudo-Eigenvalues.- 3.3.4 Bounds on Eigenvalues.- 3.3.5 Dispersive Effects and Wave Packets.- 4 The Viscous Initial Value Problem.- 4.1 The Viscous Initial Value Problem.- 4.1.1 Motivation.- 4.1.2 Derivation of the Disturbance Equations.- 4.1.3 Disturbance Measure.- 4.2 The Forced Squire Equation and Transient Growth.- 4.2.1 Eigenfunction Expansion.- 4.2.2 Blasius Boundary Layer Flow.- 4.3 The Complete Solution to the Initial Value Problem.- 4.3.1 Continuous Formulation.- 4.3.2 Discrete Formulation.- 4.4 Optimal Growth.- 4.4.1 The Matrix Exponential.- 4.4.2 Maximum Amplification.- 4.4.3 Optimal Disturbances.- 4.4.4 Reynolds Number Dependence of Optimal Growth.- 4.5 Optimal Response and Optimal Growth Rate.- 4.5.1 The Forced Problem and the Resolvent.- 4.5.2 Maximum Growth Rate.- 4.5.3 Response to Stochastic Excitation.- 4.6 Estimates of Growth.- 4.6.1 Bounds on Matrix Exponential.- 4.6.2 Conditions for No Growth.- 4.7 Localized Disturbances.- 4.7.1 Choice of Initial Disturbances.- 4.7.2 Examples.- 4.7.3 Asymptotic Behavior.- 5 Nonlinear Stability.- 5.1 Motivation.- 5.1.1 Introduction.- 5.1.2 A Model Problem.- 5.2 Nonlinear Initial Value Problem.- 5.2.1 The Velocity-Vorticity Equations.- 5.3 Weakly Nonlinear Expansion.- 5.3.1 Multiple-Scale Analysis.- 5.3.2 The Landau Equation.- 5.4 Three-Wave Interactions.- 5.4.1 Resonance Conditions.- 5.4.2 Derivation of a Dynamical System.- 5.4.3 Triad Interactions.- 5.5 Solutions to the Nonlinear Initial Value Problem.- 5.5.1 Formal Solutions to the Nonlinear Initial Value Problem.- 5.5.2 Weakly Nonlinear Solutions and the Center Manifold.- 5.5.3 Nonlinear Equilibrium States.- 5.5.4 Numerical Solutions for Localized Disturbances.- 5.6 Energy Theory.- 5.6.1 The Energy Stability Problem.- 5.6.2 Additional Constraints.- II Stability of Complex Flows and Transition.- 6 Temporal Stability of Complex Flows.- 6.1 Effect of Pressure Gradient and Crossflow.- 6.1.1 Falkner-Skan (FS) Boundary Layers.- 6.1.2 Falkner-Skan-Cooke (FSC) Boundary layers.- 6.2 Effect of Rotation and Curvature.- 6.2.1 Curved Channel Flow.- 6.2.2 Rotating Channel Flow.- 6.2.3 Combined Effect of Curvature and Rotation.- 6.3 Effect of Surface Tension.- 6.3.1 Water Table Flow.- 6.3.2 Energy and the Choice of Norm.- 6.3.3 Results.- 6.4 Stability of Unsteady Flow.- 6.4.1 Oscillatory Flow.- 6.4.2 Arbitrary Time Dependence.- 6.5 Effect of Compressibility.- 6.5.1 The Compressible Initial Value Problem.- 6.5.2 Inviscid Instabilities and Rayleigh's Criterion.- 6.5.3 Viscous Instability.- 6.5.4 Nonmodal Growth.- 7 Growth of Disturbances in Space.- 7.1 Spatial Eigenvalue Analysis.- 7.1.1 Introduction.- 7.1.2 Spatial Spectra.- 7.1.3 Gaster's Transformation.- 7.1.4 Harmonic Point Source.- 7.2 Absolute Instability.- 7.2.1 The Concept of Absolute Instability.- 7.2.2 Briggs' Method.- 7.2.3 The Cusp Map.- 7.2.4 Stability of a Two-Dimensional Wake.- 7.2.5 Stability of Rotating Disk Flow.- 7.3 Spatial Initial Value Problem.- 7.3.1 Primitive Variable Formulation.- 7.3.2 Solution of the Spatial Initial Value Problem.- 7.3.3 The Vibrating Ribbon Problem.- 7.4 Nonparallel Effects.- 7.4.1 Asymptotic Methods.- 7.4.2 Parabolic Equations for Steady Disturbances.- 7.4.3 Parabolized Stability Equations (PSE).- 7.4.4 Spatial Optimal Disturbances.- 7.4.5 Global Instability.- 7.5 Nonlinear Effects.- 7.5.1 Nonlinear Wave Interactions.- 7.5.2 Nonlinear Parabolized Stability Equations.- 7.5.3 Examples.- 7.6 Disturbance Environment and Receptivity.- 7.6.1 Introduction.- 7.6.2 Nonlocalized and Localized Receptivity.- 7.6.3 An Adjoint Approach to Receptivity.- 7.6.4 Receptivity Using Parabolic Evolution Equations.- 8 Secondary Instability.- 8.1 Introduction.- 8.2 Secondary Instability of Two-Dimensional Waves.- 8.2.1 Derivation of the Equations.- 8.2.2 Numerical Results.- 8.2.3 Elliptical Instability.- 8.3 Secondary Instability of Vortices and Streaks.- 8.3.1 Governing Equations.- 8.3.2 Examples of Secondary Instability of Streaks and Vortices.- 8.4 Eckhaus Instability.- 8.4.1 Secondary Instability of Parallel Flows.- 8.4.2 Parabolic Equations for Spatial Eckhaus Instability.- 9 Transition to Turbulence.- 9.1 Transition Scenarios and Thresholds.- 9.1.1 Introduction.- 9.1.2 Three Transition Scenarios.- 9.1.3 The Most Likely Transition Scenario.- 9.1.4 Conclusions.- 9.2 Breakdown of Two-Dimensional Waves.- 9.2.1 The Zero Pressure Gradient Boundary Layer.- 9.2.2 Breakdown of Mixing Layers.- 9.3 Streak Breakdown.- 9.3.1 Streaks Forced by Blowing or Suction.- 9.3.2 Freestream Turbulence.- 9.4 Oblique Transition.- 9.4.1 Experiments and Simulations in Blasius Flow.- 9.4.2 Transition in a Separation Bubble.- 9.4.3 Compressible Oblique Transition.- 9.5 Transition of Vortex-Dominated Flows.- 9.5.1 Transition in Flows with Curvature.- 9.5.2 Direct Numerical Simulations of Secondary Instability of Crossflow Vortices.- 9.5.3 Experimental Investigations of Breakdown of Cross-flow Vortices.- 9.6 Breakdown of Localized Disturbances.- 9.6.1 Experimental Results for Boundary Layers.- 9.6.2 Direct Numerical Simulations in Boundary Layers.- 9.7 Transition Modeling.- 9.7.1 Low-Dimensional Models of Subcritical Transition.- 9.7.2 Traditional Transition Prediction Models.- 9.7.3 Transition Prediction Models Based on Nonmodal Growth.- 9.7.4 Nonlinear Transition Modeling.- III Appendix.- A Numerical Issues and Computer Programs.- A.1 Global versus Local Methods.- A.2 Runge-Kutta Methods.- A.3 Chebyshev Expansions.- A.4 Infinite Domain and Continuous Spectrum.- A.5 Chebyshev Discretization of the Orr-Sommerfeld Equation.- A.6 MATLAB Codes for Hydrodynamic Stability Calculations.- A.7 Eigenvalues of Parallel Shear Flows.- B Resonances and Degeneracies.- B.1 Resonances and Degeneracies.- B.2 Orr-Sommerfeld-Squire Resonance.- C Adjoint of the Linearized Boundary Layer Equation.- C.1 Adjoint of the Linearized Boundary Layer Equation.- D Selected Problems on Part I.

2,215 citations

Journal ArticleDOI
TL;DR: In this article, the Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm.
Abstract: The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772·22. It is explained why expansions in Chebyshev polynomials are better suited to the solution of hydrodynamic stability problems than expansions in other, seemingly more relevant, sets of orthogonal functions.

1,365 citations