scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The effects of cooking oil fumes-derived PM2.5 on blood vessel formation through ROS-mediated NLRP3 inflammasome pathway in human umbilical vein endothelial cells.

TL;DR: It was revealed that the impact caused by COFs-derived PM2.5 on blood vessel formation through a ROS-mediated NLRP3 inflammasome pathway could significantly reduce HUVECs viability, induce the overproduction of ROS, lead to inflammation and inhibit VEGF expression, thus affect angiogenesis of HUVES in vitro.
About: This article is published in Ecotoxicology and Environmental Safety.The article was published on 2019-06-15. It has received 32 citations till now. The article focuses on the topics: Tube formation & Inflammasome.
Citations
More filters
Journal ArticleDOI
TL;DR: This review aims to outline important design parameters to consider when using in vitro methods to evaluate air pollutant toxicity, with the goal of providing increased accuracy, reproducibility, and effectiveness when incorporating in vitro data into human health evaluations.
Abstract: Air pollution consists of highly variable and complex mixtures recognized as major contributors to morbidity and mortality worldwide. The vast number of chemicals, coupled with limitations surrounding epidemiological and animal studies, has necessitated the development of new approach methods (NAMs) to evaluate air pollution toxicity. These alternative approaches include in vitro (cell-based) models, wherein toxicity of test atmospheres can be evaluated with increased efficiency compared to in vivo studies. In vitro exposure systems have recently been developed with the goal of evaluating air pollutant-induced toxicity; though the specific design parameters implemented in these NAMs-based studies remain in flux. This review aims to outline important design parameters to consider when using in vitro methods to evaluate air pollutant toxicity, with the goal of providing increased accuracy, reproducibility, and effectiveness when incorporating in vitro data into human health evaluations. This review is unique in that experimental considerations and lessons learned are provided, as gathered from first-hand experience developing and testing in vitro models coupled to exposure systems. Reviewed design aspects include cell models, cell exposure conditions, exposure chambers, and toxicity endpoints. Strategies are also discussed to incorporate in vitro findings into the context of in vivo toxicity and overall risk assessment.

50 citations

Journal ArticleDOI
TL;DR: The main mechanisms of PM 2.5 -triggered vascular endothelial injury mainly involved three aspects, including vascular endothelium permeability, vasomotor function and vascular reparative capacity, and the relationship between PM2.5 and atherosclerosis was reviewed.
Abstract: Ambient and indoor air pollution contributes annually to approximately seven million premature deaths. Air pollution is a complex mixture of gaseous and particulate materials. In particular, fine particulate matter (PM2.5) plays a major mortality risk factor particularly on cardiovascular diseases through mechanisms of atherosclerosis, thrombosis and inflammation. A review on the PM2.5-induced atherosclerosis is needed to better understand the involved mechanisms. In this review, we summarized epidemiology and animal studies of PM2.5-induced atherosclerosis. Vascular endothelial injury is a critical early predictor of atherosclerosis. The evidence of mechanisms of PM2.5-induced atherosclerosis supports effects on vascular function. Thus, we summarized the main mechanisms of PM2.5-triggered vascular endothelial injury, which mainly involved three aspects, including vascular endothelial permeability, vasomotor function and vascular reparative capacity. Then we reviewed the relationship between PM2.5-induced endothelial injury and atherosclerosis. PM2.5-induced endothelial injury associated with inflammation, pro-coagulation and lipid deposition. Although the evidence of PM2.5-induced atherosclerosis is undergoing continual refinement, the mechanisms of PM2.5-triggered atherosclerosis are still limited, especially indoor PM2.5. Subsequent efforts of researchers are needed to improve the understanding of PM2.5 and atherosclerosis. Preventing or avoiding PM2.5-induced endothelial damage may greatly reduce the occurrence and development of atherosclerosis.

50 citations


Cites background from "The effects of cooking oil fumes-de..."

  • ...5 also induces endothelial dysfunction and inhibits blood vessel formation but has no significant association with arterial stiffness [40, 41]....

    [...]

  • ...Cooking oil fumes (COFs), the main pollutants in kitchen air, can significantly reduce cellular viability, and inhibit angiogenesis in HUVECs through the ROS-mediated NLRP3 inflammasome pathway or VEGF/VEGFR2/MEK1/2/ERK1/2/ mTOR pathway [40, 119]....

    [...]

Journal ArticleDOI
TL;DR: Novel evidence is provids that PM2.5 induces corneal toxicity by triggering cell pyroptosis by activating NLRP3 inflammasome-mediated pyroPTosis axis in PM 2.5-treated HCECs, accompanied by increased ROS formation.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the impact of PM2.5 on intraocular pressure (IOP) and the associated mechanism, C57BL/6 mouse eyes were topically exposed to a PM 2.5 suspension for 3 months, and human trabecular meshwork (HTM) cells were subjected to various PM 2.5 concentrations in vitro.
Abstract: Particulate matter (PM) is strongly linked to human health and has detrimental effects on the eye. Studies have, however, focused on the ocular surface, with limited research on the impact of PM2.5 on intraocular pressure (IOP). To investigate the impact of PM2.5 on IOP and the associated mechanism, C57BL/6 mouse eyes were topically exposed to a PM2.5 suspension for 3 months, and human trabecular meshwork (HTM) cells were subjected to various PM2.5 concentrations in vitro. Cell viability, NLRP3/caspase-1, IL-1β, and GSDMD expression, reactive oxygen species (ROS) production and cell contractility were measured by western blot, ELISA, cell counting kit-8, ROS assay kit or a cell contractility assay. ROS scavenger N-acetyl-L-cysteine (NAC) and caspase-1 inhibitor VX-765 were used to intervene in PM2.5-induced damages. The results revealed that the IOP increased gradually after PM2.5 exposure, and upregulations of the NLRP3 inflammasome, caspase-1, IL-1β, and GSDMD protein levels were observed in outflow tissues. PM2.5 exposure decreased HTM cell viability and affected contraction. Furthermore, elevated ROS levels were observed as well as an activation of the NLRP3 inflammasome and downstream inflammatory factors caspase-1 and IL-1β. NAC improved HTM cell viability, inhibited the activation of the NLRP3 inflammasome axis, and HTM cell contraction by scavenging ROS. VX-765 showed similar protection against the PM2.5 induced adverse effects. This study provides novel evidence that PM2.5 has a direct toxic effect on intraocular tissues and may contribute to the initiation and development of ocular hypertension and glaucoma. This occurs as a result of increased oxidative stress and the subsequent induction of NLRP3 inflammasome mediated pyroptosis in trabecular meshwork cells.

36 citations

Journal ArticleDOI
TL;DR: Environmental exposure to Cd impairs fetal growth and placental angiogenesis via GCN-2-mediated mitochondrial stress and its mechanism using in vitro and in vivo models.

32 citations

References
More filters
Journal ArticleDOI
13 Jan 2011-Nature
TL;DR: It is shown that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome, and may explain the frequent association of mitochondrial damage with inflammatory diseases.
Abstract: An inflammatory response initiated by the NLRP3 inflammasome is triggered by a variety of situations of host 'danger', including infection and metabolic dysregulation. Previous studies suggested that NLRP3 inflammasome activity is negatively regulated by autophagy and positively regulated by reactive oxygen species (ROS) derived from an uncharacterized organelle. Here we show that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome. Resting NLRP3 localizes to endoplasmic reticulum structures, whereas on inflammasome activation both NLRP3 and its adaptor ASC redistribute to the perinuclear space where they co-localize with endoplasmic reticulum and mitochondria organelle clusters. Notably, both ROS generation and inflammasome activation are suppressed when mitochondrial activity is dysregulated by inhibition of the voltage-dependent anion channel. This indicates that NLRP3 inflammasome senses mitochondrial dysfunction and may explain the frequent association of mitochondrial damage with inflammatory diseases.

3,985 citations

Journal ArticleDOI
TL;DR: It is shown that drusen isolated from donor AMD eyes activates the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, causing secretion of interleukin-1β (IL-1 β) and IL-18, which indicates a protective role for NLRP3 andIL-18 in the progression of AMD.
Abstract: Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Drusen accumulation is the major pathological hallmark common to both dry and wet AMD. Although activation of the immune system has been implicated in disease progression, the pathways involved are unclear. Here we show that drusen isolated from donor AMD eyes activates the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, causing secretion of interleukin-1b (IL-1b) and IL-18. Drusen component C1Q also activates the NLRP3 inflammasome. Moreover, the oxidative-stress-related protein-modification carboxyethylpyrrole (CEP), a biomarker of AMD, primes the inflammasome. We found cleaved caspase-1 and NLRP3 in activated macrophages in the retinas of mice immunized with CEP-adducted mouse serum albumin, modeling a dry-AMD–like pathology. We show that laser-induced choroidal neovascularization (CNV), a mouse model of wet AMD, is exacerbated in Nlrp3(-/-) but not Il1r1(-/-) mice, directly implicating IL-18 in the regulation of CNV development. These findings indicate a protective role for NLRP3 and IL-18 in the progression of AMD.

366 citations

Journal ArticleDOI
TL;DR: It is shown that maternal exposure to fine particulate air pollution increases the risk of preterm birth and term low birth weight throughout pregnancy, and the effect of exposure time needs to be further explored.

303 citations

Journal ArticleDOI
Wei Rui1, Longfei Guan1, Fang Zhang1, Wei Zhang1, Wenjun Ding1 
TL;DR: Findings suggest PM2.5‐induced ROS may function as signaling molecules triggering ICAM‐1 and VC AM‐1 expressions through activating the ERK/AKT/NF‐κB‐dependent pathway, and further promoting monocyte adhesion to endothelial cells.
Abstract: The aim of this study was to explore the intracellular mechanisms underlying the cardiovascular toxicity of air particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) in a human umbilical vein cell line, EA.hy926. We found that PM2.5 exposure triggered reactive oxygen species (ROS) generation, resulting in a significant decrease in cell viability. Data from Western blots showed that PM2.5 induced phosphorylation of Jun N-terminal kinase (JNK), extracellular signal regulatory kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), and activation of nuclear factor kappa B (NF-κB). We further observed a significant increase in expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in a time- and dose-dependent manner. Moreover, the adhesion of monocytic THP-1 cells to EA.hy926 cells was greatly enhanced in the presence of PM2.5. However, N-acetylcysteine (NAC), a scavenger of ROS, prevented the increase of ROS generation, attenuated the phosphorylation of the above kinases, and decreased the NF-κB activation as well as the expression of ICAM-1 and VCAM-1. Furthermore, ERK inhibitor (U0126), AKT inhibitor (LY294002) and NF-κB inhibitor (BAY11-7082) significantly down-regulated PM2.5-induced ICAM-1 and VCAM-1 expression as well as adhesion of THP-1 cells, but not JNK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580), indicating that ERK/AKT/NF-κB is involved in the signaling pathway that leads to PM2.5-induced ICAM-1 and VCAM-1 expression. These findings suggest PM2.5-induced ROS may function as signaling molecules triggering ICAM-1 and VCAM-1 expressions through activating the ERK/AKT/NF-κB-dependent pathway, and further promoting monocyte adhesion to endothelial cells. Copyright © 2015 John Wiley & Sons, Ltd.

167 citations

Journal ArticleDOI
TL;DR: The roles and relationships of oxidative stress-mediated apoptosis, DNA damage, ER stress, autophagy, metabolism, and migration of ROS-modulating anticancer drugs are explored.

134 citations