scispace - formally typeset
Open accessJournal ArticleDOI: 10.1073/PNAS.2020834118

The effects of school closures on SARS-CoV-2 among parents and teachers.

02 Mar 2021-Proceedings of the National Academy of Sciences of the United States of America (Proceedings of the National Academy of Sciences)-Vol. 118, Iss: 9
Abstract: To reduce the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), most countries closed schools, despite uncertainty if school closures are an effective containment measure At the onset of the pandemic, Swedish upper-secondary schools moved to online instruction, while lower-secondary schools remained open This allows for a comparison of parents and teachers differently exposed to open and closed schools, but otherwise facing similar conditions Leveraging rich Swedish register data, we connect all students and teachers in Sweden to their families and study the impact of moving to online instruction on the incidence of SARS-CoV-2 and COVID-19 We find that, among parents, exposure to open rather than closed schools resulted in a small increase in PCR-confirmed infections (odds ratio [OR] 117; 95% CI [CI95] 103 to 132) Among lower-secondary teachers, the infection rate doubled relative to upper-secondary teachers (OR 201; CI95 152 to 267) This spilled over to the partners of lower-secondary teachers, who had a higher infection rate than their upper-secondary counterparts (OR 129; CI95 100 to 167) When analyzing COVID-19 diagnoses from healthcare visits and the incidence of severe health outcomes, results are similar for teachers, but weaker for parents and teachers' partners The results for parents indicate that keeping lower-secondary schools open had minor consequences for the overall transmission of SARS-CoV-2 in society The results for teachers suggest that measures to protect teachers could be considered

... read more

Citations
  More

34 results found


Open accessJournal ArticleDOI: 10.1073/PNAS.2022376118
Abstract: Suspension of face-to-face instruction in schools during the COVID-19 pandemic has led to concerns about consequences for students' learning. So far, data to study this question have been limited. Here we evaluate the effect of school closures on primary school performance using exceptionally rich data from The Netherlands (n ≈ 350,000). We use the fact that national examinations took place before and after lockdown and compare progress during this period to the same period in the 3 previous years. The Netherlands underwent only a relatively short lockdown (8 wk) and features an equitable system of school funding and the world's highest rate of broadband access. Still, our results reveal a learning loss of about 3 percentile points or 0.08 standard deviations. The effect is equivalent to one-fifth of a school year, the same period that schools remained closed. Losses are up to 60% larger among students from less-educated homes, confirming worries about the uneven toll of the pandemic on children and families. Investigating mechanisms, we find that most of the effect reflects the cumulative impact of knowledge learned rather than transitory influences on the day of testing. Results remain robust when balancing on the estimated propensity of treatment and using maximum-entropy weights or with fixed-effects specifications that compare students within the same school and family. The findings imply that students made little or no progress while learning from home and suggest losses even larger in countries with weaker infrastructure or longer school closures.

... read more

85 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.ABH2939
04 Jun 2021-Science
Abstract: In-person schooling has proved contentious and difficult to study throughout the SARS-CoV-2 pandemic. Data from a massive online survey in the United States indicates an increased risk of COVID-19-related outcomes among respondents living with a child attending school in-person. School-based mitigation measures are associated with significant reductions in risk, particularly daily symptoms screens, teacher masking, and closure of extra-curricular activities. A positive association between in-person schooling and COVID-19 outcomes persists at low levels of mitigation, but when seven or more mitigation measures are reported, a significant relationship is no longer observed. Among teachers, working outside the home was associated with an increase in COVID-19-related outcomes, but this association is similar to other occupations (e.g., healthcare, office work). While in-person schooling is associated with household COVID-19 risk, this risk can likely be controlled with properly implemented school-based mitigation measures.

... read more

Topics: Risk assessment (54%)

66 Citations


Open accessJournal ArticleDOI: 10.1136/BMJ.N521
23 Feb 2021-BMJ

16 Citations


Open accessJournal ArticleDOI: 10.1098/RSIF.2020.0970
Abstract: School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K-12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: -985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased.

... read more

9 Citations


Open accessJournal ArticleDOI: 10.7189/JOGH.11.05013
Omar Irfan, Jiang Li, Kun Tang1, Zhicheng Wang1  +1 moreInstitutions (2)
Abstract: Background: There is uncertainty with respect to SARS-CoV-2 transmission in children (0-19 years) with controversy on effectiveness of school-closures in controlling the pandemic. It is of equal importance to evaluate the risk of transmission in children who are often asymptomatic or mildly symptomatic carriers that may incidentally transmit SARS-CoV-2 in different settings. We conducted this review to assess transmission and risks for SARS-CoV-2 in children (by age-groups or grades) in community and educational-settings compared to adults. Methods: Data for the review were retrieved from PubMed, EMBASE, Cochrane Library, WHO COVID-19 Database, China National Knowledge Infrastructure (CNKI) Database, WanFang Database, Latin American and Caribbean Health Sciences Literature (LILACS), Google Scholar, and preprints from medRixv and bioRixv) covering a timeline from December 1, 2019 to April 1, 2021. Population-screening, contact-tracing and cohort studies reporting prevalence and transmission of SARS-CoV-2 in children were included. Data were extracted according to PRISMA guidelines. Meta-analyses were performed using Review Manager 5.3. Results: Ninety studies were included. Compared to adults, children showed comparable national (risk ratio (RR) = 0.87, 95% confidence interval (CI) = 0.71-1.060 and subnational (RR = 0.81, 95% CI = 0.66-1.01) prevalence in population-screening studies, and lower odds of infection in community/household contact-tracing studies (odds ratio (OR) = 0.62, 95% CI = 0.46-0.84). On disaggregation, adolescents observed comparable risk (OR = 1.22, 95% CI = 0.74-2.04) with adults. In educational-settings, children attending daycare/preschools (OR = 0.53, 95% CI = 0.38-0.72) were observed to be at lower-risk when compared to adults, with odds of infection among primary (OR = 0.85, 95% CI = 0.55-1.31) and high-schoolers (OR = 1.30, 95% CI = 0.71-2.38) comparable to adults. Overall, children and adolescents had lower odds of infection in educational-settings compared to community and household clusters. Conclusions: Children (<10 years) showed lower susceptibility to COVID-19 compared to adults, whereas adolescents in communities and high-schoolers had comparable risk. Risks of infection among children in educational-settings was lower than in communities. Evidence from school-based studies demonstrate it is largely safe for children (<10 years) to be at schools, however older children (10-19 years) might facilitate transmission. Despite this evidence, studies focusing on the effectiveness of mitigation measures in educational settings are urgently needed to support both public health and educational policy-making for school reopening.

... read more

Topics: Odds ratio (53%), Relative risk (53%), Cohort study (52%)

7 Citations


References
  More

30 results found


Open accessJournal ArticleDOI: 10.7326/M20-0504
Stephen A. Lauer1, Kyra H. Grantz1, Qifang Bi1, Forrest K. Jones1  +5 moreInstitutions (2)
Abstract: Using news reports and press releases from provinces, regions, and countries outside Wuhan, Hubei province, China, this analysis estimates the length of the incubation period of COVID-19 and its pu...

... read more

3,940 Citations


Open accessJournal ArticleDOI: 10.1016/J.IJANTIMICAG.2020.105924
Chih-Cheng Lai, Tzu Ping Shih, Wen Chien Ko1, Hung-Jen Tang  +1 moreInstitutions (2)
Abstract: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; previously provisionally named 2019 novel coronavirus or 2019-nCoV) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak and is a major public health issue. As of 11 February 2020, data from the World Health Organization (WHO) have shown that more than 43 000 confirmed cases have been identified in 28 countries/regions, with >99% of cases being detected in China. On 30 January 2020, the WHO declared COVID-19 as the sixth public health emergency of international concern. SARS-CoV-2 is closely related to two bat-derived severe acute respiratory syndrome-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. It is spread by human-to-human transmission via droplets or direct contact, and infection has been estimated to have mean incubation period of 6.4 days and a basic reproduction number of 2.24-3.58. Among patients with pneumonia caused by SARS-CoV-2 (novel coronavirus pneumonia or Wuhan pneumonia), fever was the most common symptom, followed by cough. Bilateral lung involvement with ground-glass opacity was the most common finding from computed tomography images of the chest. The one case of SARS-CoV-2 pneumonia in the USA is responding well to remdesivir, which is now undergoing a clinical trial in China. Currently, controlling infection to prevent the spread of SARS-CoV-2 is the primary intervention being used. However, public health authorities should keep monitoring the situation closely, as the more we can learn about this novel virus and its associated outbreak, the better we can respond.

... read more

Topics: Pneumonia (59%), Outbreak (50%)

3,083 Citations


Open accessJournal ArticleDOI: 10.1038/NATURE04153
17 Nov 2005-Nature
Abstract: Population-level analyses often use average quantities to describe heterogeneous systems, particularly when variation does not arise from identifiable groups. A prominent example, central to our current understanding of epidemic spread, is the basic reproductive number, R(0), which is defined as the mean number of infections caused by an infected individual in a susceptible population. Population estimates of R(0) can obscure considerable individual variation in infectiousness, as highlighted during the global emergence of severe acute respiratory syndrome (SARS) by numerous 'superspreading events' in which certain individuals infected unusually large numbers of secondary cases. For diseases transmitted by non-sexual direct contacts, such as SARS or smallpox, individual variation is difficult to measure empirically, and thus its importance for outbreak dynamics has been unclear. Here we present an integrated theoretical and statistical analysis of the influence of individual variation in infectiousness on disease emergence. Using contact tracing data from eight directly transmitted diseases, we show that the distribution of individual infectiousness around R(0) is often highly skewed. Model predictions accounting for this variation differ sharply from average-based approaches, with disease extinction more likely and outbreaks rarer but more explosive. Using these models, we explore implications for outbreak control, showing that individual-specific control measures outperform population-wide measures. Moreover, the dramatic improvements achieved through targeted control policies emphasize the need to identify predictive correlates of higher infectiousness. Our findings indicate that superspreading is a normal feature of disease spread, and to frame ongoing discussion we propose a rigorous definition for superspreading events and a method to predict their frequency.

... read more

Topics: Susceptible individual (51%), Super-spreader (51%)

1,922 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.ABB4218
01 May 2020-Science
Abstract: The ongoing coronavirus disease 2019 (COVID-19) outbreak expanded rapidly throughout China. Major behavioral, clinical, and state interventions were undertaken to mitigate the epidemic and prevent the persistence of the virus in human populations in China and worldwide. It remains unclear how these unprecedented interventions, including travel restrictions, affected COVID-19 spread in China. We used real-time mobility data from Wuhan and detailed case data including travel history to elucidate the role of case importation in transmission in cities across China and to ascertain the impact of control measures. Early on, the spatial distribution of COVID-19 cases in China was explained well by human mobility data. After the implementation of control measures, this correlation dropped and growth rates became negative in most locations, although shifts in the demographics of reported cases were still indicative of local chains of transmission outside of Wuhan. This study shows that the drastic control measures implemented in China substantially mitigated the spread of COVID-19.

... read more

1,570 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.ABB6105
Huaiyu Tian1, Yonghong Liu1, Yidan Li1, Chieh-Hsi Wu2  +19 moreInstitutions (12)
31 Mar 2020-Science
Abstract: Responding to an outbreak of a novel coronavirus [agent of coronavirus disease 2019 (COVID-19)] in December 2019, China banned travel to and from Wuhan city on 23 January 2020 and implemented a national emergency response. We investigated the spread and control of COVID-19 using a data set that included case reports, human movement, and public health interventions. The Wuhan shutdown was associated with the delayed arrival of COVID-19 in other cities by 2.91 days. Cities that implemented control measures preemptively reported fewer cases on average (13.0) in the first week of their outbreaks compared with cities that started control later (20.6). Suspending intracity public transport, closing entertainment venues, and banning public gatherings were associated with reductions in case incidence. The national emergency response appears to have delayed the growth and limited the size of the COVID-19 epidemic in China, averting hundreds of thousands of cases by 19 February (day 50).

... read more

1,053 Citations