scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors report the fabrication of suspended bilayer graphene devices with very little disorder, and observe quantum Hall states that are fully quantized at a magnetic field of 0.2 T, as well as broken-symmetry states at intermediate filling factors ν=0, ±1, ±2 and ±3.
Abstract: The presence of disorder makes it difficult to determine the intrinsic properties of graphene in its ideal form. Measurements of high-quality bilayer graphene flakes suspended above a substrate identify the persistence of quantum Hall behaviour at magnetic fields an order of magnitude lower than seen before, and previously unseen symmetry breaking of the lowest Landau level is also observed. Mono- and bilayer graphene have generated tremendous excitement owing to their unique and potentially useful electronic properties1. Suspending single-layer graphene flakes above the substrate2,3 has been shown to greatly improve sample quality, yielding high-mobility devices with little charge inhomogeneity. Here we report the fabrication of suspended bilayer graphene devices with very little disorder. We observe quantum Hall states that are fully quantized at a magnetic field of 0.2 T, as well as broken-symmetry states at intermediate filling factors ν=0, ±1, ±2 and ±3. In the ν=0 state, the devices show extremely high magnetoresistance that scales as magnetic field divided by temperature. This resistance is predominantly affected by the perpendicular component of the applied field, and the extracted energy gap is significantly larger than expected for Zeeman splitting. These findings indicate that the broken-symmetry states arise from many-body interactions and underscore the important part that Coulomb interactions play in bilayer graphene.

209 citations

Journal ArticleDOI
TL;DR: In this article, the exact symmetry of the Lagrangian with local quartic terms for the Dirac four-component field dictated by the lattice is identified as ${D}_{2}$ is the dihedral group, and ${U}_{c}(1)$ is a subgroup of the noninteracting Lagrangians that represents translations in Dirac language.
Abstract: The general low-energy theory of electrons interacting via repulsive short-range interactions on graphene's honeycomb lattice at half-filling is presented. The exact symmetry of the Lagrangian with local quartic terms for the Dirac four-component field dictated by the lattice is identified as ${D}_{2}\ifmmode\times\else\texttimes\fi{}{U}_{c}(1)\ifmmode\times\else\texttimes\fi{}\text{time}$ reversal, where ${D}_{2}$ is the dihedral group, and ${U}_{c}(1)$ is a subgroup of the ${\text{SU}}_{c}(2)$ ``chiral'' group of the noninteracting Lagrangian that represents translations in Dirac language. The Lagrangian describing spinless particles respecting this symmetry is parametrized by six independent coupling constants. We show how first imposing the rotational, then Lorentz, and finally chiral symmetry to the quartic terms---in conjunction with the Fierz transformations---eventually reduces the set of couplings to just two, in the ``maximally symmetric'' local interacting theory. We identify the two critical points in such a Lorentz and chirally symmetric theory as describing metal-insulator transitions into the states with either time reversal or chiral symmetry being broken. The latter is proposed to govern the continuous transition in both the Thirring and Nambu-Jona-Lasinio models in $2+1$ dimensions and with a single Dirac field. In the site-localized ``atomic'' limit of the interacting Hamiltonian, under the assumption of emergent Lorentz invariance, the low-energy theory describes the continuous transitions into the insulator with either a finite Haldane's (circulating currents) or Semenoff's (staggered density) masses, both in the universality class of the Gross-Neveu model. The simple picture of the metal-insulator transition on a honeycomb lattice emerges at which the residue of the quasiparticle pole at the metallic and the mass gap in the insulating phase both vanish continuously as the critical point is approached. In contrast to these two critical quantities, we argue that the Fermi velocity is noncritical as a consequence of the dynamical exponent being fixed to unity by the emergent Lorentz invariance near criticality. Possible effects of the long-range Coulomb interaction and the critical behavior of the specific heat and conductivity are discussed.

209 citations

Journal ArticleDOI
TL;DR: It is shown that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP), which results in important isotope effects and size effects on thermal conduction.
Abstract: The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the authors predict that a laser field in the mid-infrared range can produce observable band gaps in the electronic structure of graphene and show how they can be tuned by using the laser polarization.
Abstract: Could a laser field lead to the much sought-after tunable band gaps in graphene? By using Floquet theory combined with Green's functions techniques, we predict that a laser field in the mid-infrared range can produce observable band gaps in the electronic structure of graphene. Furthermore, we show how they can be tuned by using the laser polarization. Our results could serve as a guidance to design optoelectronic nanodevices.

209 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations


"The electronic properties of graphe..." refers background in this paper

  • ...Be ause the DC magnetotransport properties ofgraphene are normally measured with the possibilityof tuning its ele troni density by a gate potential(Novoselov et al., 2004), it is important to ompute the ondu tivity kernel, sin e this has dire t experimentalrelevan e....

    [...]

  • ...The same polarizability describes the screening of an external field perpendicular to the layers, like the one induced by a gate in electrically doped systems (Novoselov et al., 2004)....

    [...]

  • ...Because the DC magnetotransport properties of graphene are normally measured with the possibility of tuning its electronic density by a gate potential (Novoselov et al., 2004), it is important to compute the conductivity kernel, since this has direct experimental relevance....

    [...]

  • ...…studies of graphene sta ks have showed that, within reasing number of layers, the system be omes in reas-ingly metalli ( on entration of harge arriers at zero en-ergy gradually in reases), and there appear several typesof ele tron-and-hole-like arries (Morozov et al., 2005;Novoselov et al., 2004)....

    [...]

  • ...The same polarizabilitydes ribes the s reening of an external eld perpendi ularto the layers, like the one indu ed by a gate in ele tri- ally doped systems (Novoselov et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations


"The electronic properties of graphe..." refers background in this paper

  • ...As the current status of the experiment and potential applications have recently been reviewed (Geim and Novoselov, 2007), in this article we mostly concentrate on the theory and more technical aspects of electronic properties of this exciting new material....

    [...]

  • ...As the urrent status of the experimentand potential appli ations have re ently been reviewed(Geim and Novoselov, 2007), in this arti le we mostly on entrate on the theory and more te hni al aspe ts ofele troni properties of this ex iting new material....

    [...]

  • ...It has also been suggested that Coulomb intera tionsare onsiderably enhan ed in smaller geometries, su has graphene quantum dots (Milton Pereira Junior et al.,2007), leading to unusual Coulomb blo kade e e ts 4(Geim and Novoselov, 2007) and perhaps to magneti phenomena su h as the Kondo e e t....

    [...]

  • ...…most versatile systems in ondensedmatter resear h.Besides the unusual basi properties, graphene hasthe potential for a large number of appli ations(Geim and Novoselov, 2007), from hemi al sensors(Chen et al., 2007 ; S hedin et al., 2007) to transistors(Nilsson et al., 2007b; Oostinga et al.,…...

    [...]

  • ...Besides the unusual basic properties, graphene has the potential for a large number of applications (Geim and Novoselov, 2007), from chemical sensors (Chen et al....

    [...]

Book
01 Jan 1934
TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Abstract: Chapter 1: Stresses and Strains Chapter 2: Foundations of Plasticity Chapter 3: Elasto-Plastic Bending and Torsion Chapter 4: Plastic Analysis of Beams and Frames Chapter 5: Further Solutions of Elasto-Plastic Problems Chapter 6: Theory of the Slipline Field Chapter 7: Steady Problems in Plane Strain Chapter 8: Non-Steady Problems in Plane Strain

20,724 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations


"The electronic properties of graphe..." refers background or methods in this paper

  • ...This amazing re-sult has been observed experimentally (Novoselov et al.,2005a; Zhang et al., 2005) as shown in Fig.20....

    [...]

  • ...Adapted from(Novoselov et al., 2005a)....

    [...]

  • ...Adapted from (Novoselov et al.,2005a).and hen e σxy,inc. = I/VH = ±4Ne2/h, whi h is thenaive expe tation....

    [...]

  • ...The period of os illations ∆n = 4B/Φ0,where B is the applied eld and Φ0 is the ux quantum(Novoselov et al., 2005a).or equivalently: (Oσ+ + O†σ−)φ = (2E/ωc)φ , (100)where σ± = σx ± iσy, and we have de ned the dimen-sionless length s ale: ξ = y ℓB − ℓBk , (101)and 1D harmoni os illator operators: O =…...

    [...]

  • ...…invery unusual ways when ompared to ordinary ele tronsif subje ted to magneti elds, leading to new physi alphenomena (Gusynin and Sharapov, 2005; Peres et al.,2006 ) su h as the anomalous integer quantum Hall ef-fe t (IQHE) measured experimentally (Novoselov et al.,2005a; Zhang et al., 2005)....

    [...]

Book
01 Jan 1939

14,299 citations