scispace - formally typeset
Open AccessJournal ArticleDOI

The electronic properties of graphene

Reads0
Chats0
TLDR
In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems

TL;DR: In this article, the authors investigate the stability and electronic properties of the honeycomb structure of the arsenene system based on first-principles calculations and find that both buckled and puckered arsenenes possess indirect gaps.
Journal ArticleDOI

Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination

TL;DR: Nitrogen-doped graphene oxide quantum dots exhibit both p- and n-type conductivities and catalyze overall water-splitting under visible-light irradiation, and the reaction mimics biological photosynthesis.
Journal ArticleDOI

Strongly enhanced charge-density-wave order in monolayer NbSe2

TL;DR: A combined optical and electrical transport study on the many-body collective-order phase diagram of NbSe2 down to a thickness of one monolayer opens up a new window for search and control of collective phases of two-dimensional matter, as well as expanding the functionalities of these materials for electronic applications.
Journal ArticleDOI

Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

TL;DR: In this paper, the authors exploit the unique tunability of a honeycomb optical lattice to adjust the effective mass of the Dirac fermions by breaking inversion symmetry and changing the lattice anisotropy.
Journal ArticleDOI

Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS2

TL;DR: In this article, the authors demonstrate the continuous tuning of the electronic structure of atomically thin MoS2 on flexible substrates by applying a uniaxial tensile strain.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Book

Theory of elasticity

TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Related Papers (5)