scispace - formally typeset
Open AccessJournal ArticleDOI

The electronic properties of graphene

Reads0
Chats0
TLDR
In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon

TL;DR: In this article, the area-normalized capacitance of lightly N-doped activated graphene with similar porous structure was measured and a trend of upwards shifts of the Dirac Point with increasing N concentration was observed.
Journal ArticleDOI

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process

TL;DR: This work reports the adhesion energy of large-area monolayer graphene synthesized on copper measured by double cantilever beam fracture mechanics testing and demonstrates the etching-free renewable transfer process of monolayers graphene that utilizes the repetition of the mechanical delamination followed by the regrowth of monoayer graphene on a copper substrate.
Journal ArticleDOI

Observation of Plasmarons in Quasi-Freestanding Doped Graphene

TL;DR: By measuring the spectral function of charge carriers in quasi-freestanding graphene with angle-resolved photoemission spectroscopy, it is shown that at finite doping, this well-known linear Dirac spectrum does not provide a full description of the charge-carrying excitations.
Journal ArticleDOI

Graphene Frequency Multipliers

TL;DR: In this paper, the authors used the ambipolar transport properties of graphene flakes to fabricate full-wave signal rectifiers and frequency-doubling devices, and the spectral purity of the 20-kHz output signal is excellent.
Journal ArticleDOI

Observation of three-component fermions in the topological semimetal molybdenum phosphide

TL;DR: An angle-resolved photoemission spectroscopy is used to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide, which opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Book

Theory of elasticity

TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Related Papers (5)