scispace - formally typeset
Open AccessJournal ArticleDOI

The electronic properties of graphene

Reads0
Chats0
TLDR
In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Graphene: Status and Prospects

TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
References
More filters
Journal ArticleDOI

Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect

TL;DR: It is demonstrated that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias and can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2.
Journal ArticleDOI

Electronic Structure and Stability of Semiconducting Graphene Nanoribbons

TL;DR: According to the extrapolated inverse power law obtained in this work, armchair carbon nanoribbons of widths larger than 8 nm will present a maximum band gap of 0.3 eV, while for ribbons with a width of 80 nm the maximum possible band gap is 0.05 eV.
Journal ArticleDOI

Graphene nano-ribbon electronics

TL;DR: In this article, the electrical properties of nano-ribboned field effect transistor (FE transistor) devices were investigated as a function of ribbon width, and it was shown that the resistivity of a ribbon increases as its width decreases, indicating the impact of edge states.
Journal ArticleDOI

Adsorption of H 2 O , N H 3 , CO, N O 2 , and NO on graphene: A first-principles study

TL;DR: In this paper, the authors investigated the adsorption of CO, CO, and NO on a graphene substrate using first-principles calculations and determined the optimal position and orientation of these molecules on the graphene surface.
Journal ArticleDOI

Atomic Structure of Graphene on SiO2

TL;DR: Atomic structures and nanoscale morphology of graphene-based electronic devices are revealed for the first time and a strong spatially dependent perturbation is revealed which breaks the hexagonal lattice symmetry of the graphitic lattice.
Related Papers (5)