scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
19 Jun 2009-Science
TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Abstract: Graphene is a wonder material with many superlatives to its name. It is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a benchtop experiment. This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.

12,117 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, micro-Raman scattering measurements on three different graphite-based materials: micro-structured Highly Oriented Pyrolytic Graphite (HOPG) disks with heights in the 20-2 nm range, exfoliated graphene monolayer, and FLG epitaxially grown on carbon terminated 4H-silicon carbide (4H-SiC) substrates.
Abstract: To show the similarities between exfoliated graphene and epitaxial few layer graphite (FLG) layers, we present micro-Raman scattering measurements on three different graphite-based materials: micro-structured Highly Oriented Pyrolytic Graphite (HOPG) disks with heights in the 20-2 nm range, exfoliated graphene monolayer, and FLG epitaxially grown on carbon terminated 4H-silicon carbide (4H-SiC) substrates. We show that despite the fact the FLG layers are composed of many layers, the band structure of FLG epitaxially grown on 4H-SiC substrate must be composed of simple electronic bands as witnessed by a single component, Lorentzian shaped, double resonance Raman feature.

309 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic structure of bilayer graphene was investigated from a resonant Raman study of the band using different laser excitation energies, revealing the difference of the effective masses of electrons and holes.
Abstract: The electronic structure of bilayer graphene is investigated from a resonant Raman study of the ${G}^{\ensuremath{'}}$ band using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for bilayer graphene are obtained from the analysis of the dispersive behavior of the Raman features, and reveal the difference of the effective masses of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.

299 citations


Additional excerpts

  • ...Adapted from Malard et al., 2007.graphene layers....

    [...]

Journal ArticleDOI
TL;DR: Graphene is the first example of truly two-dimensional crystals - it's just one layer of carbon atoms as mentioned in this paper and it turns out that graphene is a gapless semiconductor with unique electronic properties resulting from the fact that charge carriers in graphene obey linear dispersion relation.
Abstract: Graphene is the first example of truly two-dimensional crystals - it's just one layer of carbon atoms. It turns out that graphene is a gapless semiconductor with unique electronic properties resulting from the fact that charge carriers in graphene obey linear dispersion relation, thus mimicking massless relativistic particles. This results in the observation of a number of very peculiar electronic properties - from an anomalous quantum Hall effect to the absence of localization. It also provides a bridge between condensed matter physics and quantum electrodynamics and opens new perspectives for carbon-based electronics. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

299 citations

Journal ArticleDOI
TL;DR: It is proposed that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade, and theory shows good agreement with the experimental data.
Abstract: We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presence of necks arising from the roughness of the graphene edge. With the average transmission as the only fitting parameter, our theory shows good agreement with the experimental data.

298 citations


"The electronic properties of graphe..." refers background in this paper

  • ..., 2006; Martin and Blanter, 2009) as well as Coulomb blockade effects (Sols et al., 2007)....

    [...]

  • ...Right: Zoom of the low energy states shown onthe right.ade e e ts (Sols et al., 2007)....

    [...]

Journal ArticleDOI
TL;DR: In this article, a theory of weak localization which is put rigorously on a quasiclassical basis is presented, and all the important quantitative results obtained so far are recovered.

295 citations