scispace - formally typeset

Journal ArticleDOI

The evolution of life histories

01 Oct 1993-Journal of Animal Ecology (Oxford University Press)-Vol. 62, Iss: 4, pp 796

AbstractPrologue Part I: Evolutionary explanation Demography: age and stage structure Quantitative genetics and reaction norms Trade-offs Lineage-specific effects Part II: Age and size at maturity Number and size of offspring Reproductive lifespan and ageing Appendices Glossary References Author index Subject index.

Topics: Reproductive value (52%), Life history theory (52%)

...read more

Citations
More filters

Journal ArticleDOI
Peter M. Cox1, Richard Betts1, Chris D. Jones1, S. A. Spall1, I. Totterdell 
09 Nov 2000-Nature
TL;DR: Results from a fully coupled, three-dimensional carbon–climate model are presented, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century.
Abstract: The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon–climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr-1 is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback.

3,614 citations


Journal ArticleDOI
TL;DR: This paper advocates multifaceted approaches to the study of local adaptation, and stresses the need for experiments explicitly addressing hypotheses about the role of particular ecological and genetic factors that promote or hinder local adaptation.
Abstract: Studies of local adaptation provide important insights into the power of natural selection relative to gene flow and other evolutionary forces. They are a paradigm for testing evolutionary hypotheses about traits favoured by particular environmental factors. This paper is an attempt to summarize the conceptual framework for local adaptation studies. We first review theoretical work relevant for local adaptation. Then we discuss reciprocal transplant and common garden experiments designed to detect local adaptation in the pattern of deme · habitat interaction for fitness. Finally, we review research questions and approaches to studying the processes of local adaptation ‐ divergent natural selection, dispersal and gene flow, and other processes affecting adaptive differentiation of local demes. We advocate multifaceted approaches to the study of local adaptation, and stress the need for experiments explicitly addressing hypotheses about the role of particular ecological and genetic factors that promote or hinder local adaptation. Experimental evolution of replicated populations in controlled spatially heterogeneous environments allow direct tests of such hypotheses, and thus would be a valuable way to complement research on natural populations.

2,918 citations


Journal ArticleDOI
TL;DR: Viewing an individual's immune response to parasites as being subject to optimization in the face of other demands offers potential insights into mechanisms of life history trade-offs, sexual selection, parasite-mediated selection and population dynamics.
Abstract: In the face of continuous threats from parasites, hosts have evolved an elaborate series of preventative and controlling measures - the immune system - in order to reduce the fitness costs of parasitism. However, these measures do have associated costs. Viewing an individual's immune response to parasites as being subject to optimization in the face of other demands offers potential insights into mechanisms of life history trade-offs, sexual selection, parasite-mediated selection and population dynamics. We discuss some recent results that have been obtained by practitioners of this approach in natural and semi-natural populations, and suggest some ways in which this field may progress in the near future.

2,259 citations


Journal ArticleDOI
TL;DR: Phenotypic plasticity is the change in the expressed phenotype of a genotype as a function of the environment, and is likely due both to differences in allelic expression across environments and to changes in interactions among loci.
Abstract: To achieve a coherent evolutionary theory, it is necessary to account for the effects of the environment on the process of development. Phenotypic plasticity is the change in the expressed phenotype of a genotype as a function of the environment. Various measures of plasticity exist, many of which can be united within the framework of a polynomial function. This function is the norm of reaction. For the special case of a linear reaction norm, genetic variation can be partitioned into portions that are independent and dependent on the environment. From this partition two heritability measures are derived which can be used, alternatively, to compare populations or make predictions about the response to selection. Genetically, plasticity is likely due both to differences in allelic expression across environments and to changes in interactions among loci; plasticity is not a function of heterozygosity. Plasticity responds to both artificial and natural selection. The evolution of plasticity is modeled in thre...

1,593 citations


Journal ArticleDOI
TL;DR: Multi-scale, mechanistic understanding of species-environment relations will likely contribute to better predictions about large scale problems, such as the establishment and spread of exotic species or alterations in community composition with changing land use or climate.
Abstract: A heuristic framework for understanding and predicting the distribution and categorical abundance of species in stream communities is presented. The framework requires that species be described in terms of their functional relationships to habitat selective forces or their surrogates, which constitute "filters" occurring at hierarchical landscape scales (ranging from microhabitats to watersheds or basins). Large-scale filters are viewed as causative or mechanistic agents that constrain expression of local selective forces or biotic potential at lower scales. To join a local community, species in a regional pool must possess appropriate functional attributes (species traits) to "pass" through the nested filters. Biotic interactions are also a potential filter on local community composition, and they are invoked at the lower hierarchical levels, after species have passed through the physicochemical habitat filters. Potential landscape filters and their associated selective properties are identified, as are ...

1,580 citations