scispace - formally typeset
Journal ArticleDOI

The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity

Reads0
Chats0
TLDR
It is concluded that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy and that the replenishment of adiponECTin might provide a novel treatment modality for insulin resistance and type 2 diabetes.
Abstract
Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.

read more

Citations
More filters
Journal ArticleDOI

Insulin signalling and the regulation of glucose and lipid metabolism

TL;DR: The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide, and tissues such as muscle, fat and liver become less responsive or resistant to insulin.
Journal ArticleDOI

Increased oxidative stress in obesity and its impact on metabolic syndrome

TL;DR: It is suggested that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Journal ArticleDOI

Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase

TL;DR: It is shown that phosphorylation and activation of the 5′-AMP-activated protein kinase (AMPK) are stimulated with globular and full-length Ad in skeletal muscle and only with full- lengths Ad in the liver, indicating that stimulation of glucose utilization and fatty-acid oxidation by Ad occurs through activation of AMPK.
Journal ArticleDOI

TLR4 links innate immunity and fatty acid–induced insulin resistance

TL;DR: It is suggested that TLR4 is a molecular link among nutrition, lipids, and inflammation and that the innate immune system participates in the regulation of energy balance and insulin resistance in response to changes in the nutritional environment.
Journal ArticleDOI

Adipose tissue as an endocrine organ.

TL;DR: These proteins commonly known as adipokines are central to the dynamic control of energy metabolism, communicating the nutrient status of the organism with the tissues responsible for controlling both energy intake and expenditure as well as insulin sensitivity.
References
More filters
Journal ArticleDOI

The hormone resistin links obesity to diabetes

TL;DR: It is shown that adipocytes secrete a unique signalling molecule, which is named resistin (for resistance to insulin), which circulating resistin levels are decreased by the anti-diabetic drug rosiglitazone, and increased in diet-induced and genetic forms of obesity.
Journal ArticleDOI

A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes

TL;DR: A novel 30-kDa secretory protein, Acrp30 (adipocyte complement-related protein of 30 kDa), that is made exclusively in adipocytes and whose mRNA is induced over 100-fold during adipocyte differentiation is described.
Journal ArticleDOI

Cellular mechanisms of insulin resistance

TL;DR: It is shown that commonly accepted models that attempt to explain the association of insulin resistance and obesity are incompatible with recent findings and an alternative model is proposed that appears to fit these and other available data.
Journal ArticleDOI

AdipoQ is a novel adipose-specific gene dysregulated in obesity.

TL;DR: The tissue-specific expression of a putative secreted protein suggests that this factor may function as a novel signaling molecule for adipose tissue.
Related Papers (5)