scispace - formally typeset
Search or ask a question
Journal Article

The Feynman Lectures on Physics Addison-Wesley Reading

About: This article is published in Journal of Multivariate Analysis.The article was published on 1963-01-01 and is currently open access. It has received 1364 citations till now. The article focuses on the topics: Reading (process).
Citations
More filters
Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: In this article, the authors demonstrated the feasibility of quantum teleportation over arbitrary distances of the state of a quantum system by using a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon.
Abstract: Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

4,232 citations

Journal ArticleDOI
TL;DR: This work describes systems that are informationally equivalent and that can be characterized as sentential or diagrammatic, and contrasts the computational efficiency of these representotions for solving several illustrative problems in mothematics and physics.

3,237 citations

Journal ArticleDOI
TL;DR: With properly chosen parameters, the model provides a remarkably accurate ``roadmap'' of nanotube behavior beyond Hooke's law.
Abstract: Carbon nanotubes subject to large deformations reversibly switch into different morphological patterns. Each shape change corresponds to an abrupt release of energy and a singularity in the stress-strain curve. These transformations, simulated using a realistic many-body potential, are explained by a continuum shell model. With properly chosen parameters, the model provides a remarkably accurate ``roadmap'' of nanotube behavior beyond Hooke's law.

2,458 citations

Journal ArticleDOI
TL;DR: The exciting successes in taming molecular-level movement thus far are outlined, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion are highlighted.
Abstract: The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.

2,301 citations

Journal ArticleDOI
TL;DR: By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and are shaping the understanding of cell biology, physiology and medicine.
Abstract: Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and are shaping our understanding of cell biology, physiology and medicine.

1,900 citations