scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Fornax Deep Survey with VST. IX. Catalog of sources in the FDS area with an example study for globular clusters and background galaxies

TL;DR: In this article, the authors presented the catalogs of compact stellar systems in the Fornax cluster, as well as extended background sources and point-like sources and derived ugri photometry of ∼1.7 million sources over the ∼21 square degree area of FDS centered on the bright central galaxy NGC 1399.
Abstract: Context. A possible pathway for understanding the events and the mechanisms involved in galaxy formation and evolution is an in-depth investigation of the galactic and inter-galactic fossil sub-structures with long dynamical timescales: stars in the field and in stellar clusters. Aims: This paper continues the Fornax Deep Survey (FDS) series. Following previous studies dedicated to extended Fornax cluster members, we present the catalogs of compact stellar systems in the Fornax cluster, as well as extended background sources and point-like sources. Methods: We derived ugri photometry of ∼1.7 million sources over the ∼21 square degree area of FDS centered on the bright central galaxy NGC 1399. For a wider area, of ∼27 square degrees extending in the direction of NGC 1316, we provided gri photometry for ∼3.1 million sources. To improve the morphological characterization of sources, we generated multi-band image stacks by coadding the best-seeing gri-band single exposures with a cut at full width at half maximum (FWHM) ≤ 0.″9. We used the multi-band stacks as master detection frames, with a FWHM improved by ∼15% and a FWHM variability from field to field reduced by a factor of ∼2.5 compared to the pass-band with the best FWHM, namely the r-band. The identification of compact sources, in particular, globular clusters (GC), was obtained from a combination of photometric (e.g., colors, magnitudes) and morphometric (e.g., concentration index, elongation, effective radius) selection criteria, also taking as reference the properties of sources with well-defined classifications from spectroscopic or high-resolution imaging data. Results: Using the FDS catalogs, we present a preliminary analysis of GC distributions in the Fornax area. The study confirms and extends further previous results that were limited to a smaller survey area. We observed the inter-galactic population of GCs, a population of mainly blue GCs centered on NGC 1399, extending over ∼0.9 Mpc, with an ellipticity ɛ ∼ 0.65 and a small tilt in the direction of NGC 1336. Several sub-structures extend over ∼0.5 Mpc along various directions. Two of these structures do not cross any bright galaxy; one of them appears to be connected to NGC 1404, a bright galaxy close to the cluster core and particularly poor in GCs. Using the gri catalogs, we analyze the GC distribution over the extended FDS area and do not find any obvious GC sub-structure bridging the two brightest cluster galaxies, namely, NGC 1316 and NGC 1399. Although NGC 1316 is more than twice as bright of NGC 1399 in optical bands, using gri data, we estimate a GC population that is richer by a factor of ∼3-4 around NGC 1399, as compared to NGC 1316, out to galactocentric distances of ∼40' or ∼230 kpc. Full Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/639/A136

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors report the discovery of 27 low-surface brightness galaxies, of which 12 are candidate ultra-diffuse galaxy (UDG) in the Hydra I cluster, based on deep observations taken as part of the VST Early-type Galaxy Survey (VEGAS).
Abstract: In this paper we report on the discovery of 27 low-surface brightness galaxies, of which 12 are candidate ultra-diffuse galaxy (UDG) in the Hydra I cluster, based on deep observations taken as part of the VST Early-type Galaxy Survey (VEGAS). This first sample of UDG candidates in the Hydra I cluster represents an important step in our project that aims to enlarge the number of confirmed UDGs and, through study of statistically relevant samples, constrain the nature and formation of UDGs. This study presents the main properties of this class of galaxies in the Hydra I cluster. For all UDGs, we analyse the light and colour distribution, and provide a census of the globular cluster (GC) systems around them. Given the limitations of a reliable GC selection based on two relatively close optical bands only, we find that half of the UDG candidates have a total GC population consistent with zero. Of the other half, two galaxies have a total population larger than zero at 2$\sigma$ level. We estimate the stellar mass, the total number of GCs and the GC specific frequency ($S_N$). Most of the candidates span a range of stellar masses of $10^7-10^8$~M$_{\odot}$. Based on the GC population of these newly discovered UDGs, we conclude that most of these galaxies have a standard or low dark matter content, with a halo mass of $\leq 10^{10}$~M$_{\odot}$.

22 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the discovery of 27 low-surface brightness galaxies, of which 12 are candidates for ultra-diffuse galaxies (UDG) in the Hydra I cluster, based on deep observations taken as part of the VST Early-type Galaxy Survey (VEGAS).
Abstract: In this paper, we report the discovery of 27 low-surface brightness galaxies, of which 12 are candidates for ultra-diffuse galaxies (UDG) in the Hydra I cluster, based on deep observations taken as part of the VST Early-type Galaxy Survey (VEGAS). This first sample of UDG candidates in the Hydra I cluster represents an important step in our project that aims to enlarge the number of confirmed UDGs and, through study of statistically relevant samples, constrain the nature and formation of UDGs. This study presents the main properties of this class of galaxies in the Hydra I cluster. For all UDGs, we analysed the light and colour distribution, and we provide a census of the globular cluster (GC) systems around them. Given the limitations of a reliable GC selection based on two relatively close optical bands only, we find that half of the UDG candidates have a total GC population consistent with zero. Of the other half, two galaxies have a total population larger than zero at 2σ level. We estimate the stellar mass, the total number of GCs, and the GC specific frequency (S N ). Most of the candidates span a range of stellar masses of 107 − 108 M ⊙ . Based on the GC population of these newly discovered UDGs, we conclude that most of these galaxies have a standard or low dark matter content, with a halo mass of ≤1010 M ⊙ .

21 citations

Journal ArticleDOI
31 Aug 2021
TL;DR: In this paper, the authors describe the mechanisms responsible for its formation and evolution, considering the large contribution given to the topic in the last decades by both the theoretical and observational sides, and give an overview of the most recent works that take advantage of the ICL as a luminous tracer of the dark matter distribution in galaxy groups and clusters.
Abstract: Not all the light in galaxy groups and clusters comes from stars that are bound to galaxies. A significant fraction of it constitutes the so-called intracluster or diffuse light (ICL), a low surface brightness component of groups/clusters generally found in the surroundings of the brightest cluster galaxies and intermediate/massive satellites. In this review, I will describe the mechanisms responsible for its formation and evolution, considering the large contribution given to the topic in the last decades by both the theoretical and observational sides. Starting from the methods that are commonly used to isolate the ICL, I will address the remarkable problem given by its own definition, which still makes the comparisons among different studies not trivial, to conclude by giving an overview of the most recent works that take advantage of the ICL as a luminous tracer of the dark matter distribution in galaxy groups and clusters.

18 citations

Journal ArticleDOI
01 Jan 2022
TL;DR: In this paper , the authors used the VLT/VIMOS spectroscopic data from the FVSS survey in the Fornax cluster, covering one square degree around the central massive galaxy NGC 1399.
Abstract: The Fornax cluster provides an unparalleled opportunity to investigate in detail the formation and evolution of early-type galaxies in a dense environment. We aim at kinematically characterizing photometrically detected globular cluster (GC) candidates in the core of the cluster. We used the VLT/VIMOS spectroscopic data from the FVSS survey in the Fornax cluster, covering one square degree around the central massive galaxy NGC 1399. We confirmed a total of 777 GCs, almost doubling the previously detected GCs, using the same dataset by Pota et al. (2018). Combined with previous literature radial velocity measurements of GCs in Fornax, we compiled the most extensive spectroscopic GC sample of 2341 objects in this environment. We found that red GCs are mostly concentrated around major galaxies, while blue GCs are kinematically irregular and are widely spread throughout the core region of the cluster. The velocity dispersion profiles of blue and red GCs show a quite distinct behaviour. Blue GCs exhibit a sharp increase in the velocity dispersion profile from 250 to 400km/s within 5 arcminutes (29 kpc/1 reff of NGC 1399) from the central galaxy. The velocity dispersion profile of red GCs follows a constant value in between 200-300km/s until 8 arcminutes (46 kpc/1.6reff), and then rises to 350km/s at 10 arcminutes (58 kpc/2 reff). Beyond 10 arcminutes and out to 40 arcminutes (230 kpc/8 reff), blue and red GCs show a constant velocity dispersion of 300+/-50km/s, indicating that both GC populations are tracing the cluster potential. We have kinematically confirmed and characterized the previously photometrically discovered overdensities of intra-cluster GCs. We found that those substructured intra-cluster regions in Fornax are dominated mostly by blue GCs.

8 citations

References
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Abstract: We present a full sky 100 micron map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 micron and 240 micron data, we have constructed a map of the dust temperature, so that the 100 micron map can be converted to a map proportional to dust column density. The result of these manipulations is a map with DIRBE-quality calibration and IRAS resolution. To generate the full sky dust maps, we must first remove zodiacal light contamination as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 micron DIRBE map against the Leiden- Dwingeloo map of H_I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 micron flux. For the 100 micron map, no significant CIB is detected. In the 140 micron and 240 micron maps, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 \pm 13 nW/m^2/sr at 140 micron, and 17 \pm 4 nW/m^2/sr at 240 micron (95% confidence). This integrated flux is ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles estimates in regions of low and moderate reddening. These dust maps will also be useful for estimating millimeter emission that contaminates CMBR experiments and for estimating soft X-ray absorption.

14,295 citations

Journal ArticleDOI
TL;DR: The SExtractor ( Source Extractor) as mentioned in this paper is an automated software that optimally detects, deblends, measures and classifies sources from astronomical images, which is particularly suited to the analysis of large extragalactic surveys.
Abstract: We present the automated techniques we have developed for new software that optimally detects, deblends, measures and classifies sources from astronomical images: SExtractor ( Source Extractor ). We show that a very reliable star/galaxy separation can be achieved on most images using a neural network trained with simulated images. Salient features of SExtractor include its ability to work on very large images, with minimal human intervention, and to deal with a wide variety of object shapes and magnitudes. It is therefore particularly suited to the analysis of large extragalactic surveys.

10,983 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline, and achieved uncertainties of 56, 34, 25, and 29 mmag in the colors u − g, g − r, r − i, and i − z, per star.
Abstract: We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u – g, g – r, r – i, and i – z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm our earlier "blue tip" reddening measurements, finding reddening coefficients different by –3%, 1%, 1%, and 2% in u – g, g – r, r – i, and i – z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an RV = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B – V) to extinction in 88 bandpasses for four values of RV , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.

6,643 citations

Related Papers (5)