scispace - formally typeset
Journal ArticleDOI

The Fourth-order Bessel–type Differential Equation

Reads0
Chats0
TLDR
The Bessel-type functions as discussed by the authors are solutions of higher-order linear differential equations, with a regular singularity at the origin and an irregular singularity on the point of infinity of the complex plane, which are derived by linear combinations and limit processes from the classical Bessel functions and the Krall Jacobi-type and Laguerre-type orthogonal polynomials.
Abstract
The Bessel-type functions, structured as extensions of the classical Bessel functions, were defined by Everitt and Markett in 1994. These special functions are derived by linear combinations and limit processes from the classical orthogonal polynomials, classical Bessel functions and the Krall Jacobi-type and Laguerre-type orthogonal polynomials. These Bessel-type functions are solutions of higher-order linear differential equations, with a regular singularity at the origin and an irregular singularity at the point of infinity of the complex plane. There is a Bessel-type differential equation for each even-order integer; the equation of order two is the classical Bessel differential equation. These even-order Bessel-type equations are not formal powers of the classical Bessel equation. When the independent variable of these equations is restricted to the positive real axis of the plane they can be written in the Lagrange symmetric (formally self-adjoint) form of the Glazman–Naimark type, with real coeffic...

read more

Citations
More filters
Journal ArticleDOI

Theory of Functions of a Complex Variable

W. Burnside
- 01 Jun 1893 - 
TL;DR: The theory of functions is the basis on which the whole of pure mathematics which deals with continuously varying quantity rests as mentioned in this paper, and the answer would not be too wide nor would it always imply too much.
Journal ArticleDOI

Spectral analysis of fourth order differential operators III

TL;DR: In this article, the spectral theory of differential operators of the form============★★★★★★★★★★ Ⴗℒ2w(0, ∞) was studied and estimates for the eigenfunctions and M -matrix were derived.
Journal ArticleDOI

Properties of the solutions of the fourth-order Bessel-type differential equation

TL;DR: In this paper, a new proof of the existence of this solution base is given, on using the advanced theory of special functions in the complex plane, which leads to the development of analytical properties of these solutions, in particular the series expansions of all solutions at the regular singularity at the origin.
Posted Content

Fourth-order Bessel-type special functions: a survey

TL;DR: In this paper, the authors report on the properties of the fourth-order Bessel-type linear ordinary differential equation, on the generated self-adjoint differential operators in two associated Hilbert function spaces, and on the generalisation of the classical Hankel integral transform.
Posted Content

The Fourth-Order Type Linear Ordinary Differential Equations

TL;DR: In this article, the authors report on the recent advancements in the search for explicit representation, in classical special functions, of the solutions of the fourth-order ordinary differential equations named Bessel-type, Jacobi-type and Legendre-type.
References
Related Papers (5)