scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The future of near-field communication-based wireless sensing.

02 Mar 2021-Nature Reviews Materials (Springer Science and Business Media LLC)-Vol. 6, Iss: 4, pp 1-3
TL;DR: In this paper, the authors proposed a miniature, battery-free and disposable sensing system for health care and food quality monitoring using near-field communication (NFC), which is a high-security, wireless, short-range, data exchange technology.
Abstract: Near-field communication emerged as a high-security, wireless, short-range, data exchange technology nearly two decades ago; its ability to simultaneously transfer power and data between devices offers exciting opportunities for the design of miniature, battery-free and disposable sensing systems in health care and food quality monitoring. Near-field communication (NFC) emerged as a high-security, wireless, short-range, data exchange technology nearly two decades ago; its ability to simultaneously transfer power and data between devices offers exciting opportunities for the design of miniature, battery-less and disposable sensing systems in healthcare and food quality monitoring.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner as mentioned in this paper .
Abstract: Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.

119 citations

Journal ArticleDOI
TL;DR: In this paper , the additive-free titanium carbide (Ti 3 C 2 T x ) MXene aqueous inks are regulated with large single-layer ratio and narrow flake size distribution, offering metallic conductivity.
Abstract: Abstract Wireless technologies-supported printed flexible electronics are crucial for the Internet of Things (IoTs), human-machine interaction, wearable and biomedical applications. However, the challenges to existing printing approaches remain, such as low printing precision, difficulty in conformal printing, complex ink formulations and processes. Here we present a room-temperature direct printing strategy for flexible wireless electronics, where distinct high-performance functional modules (e.g., antennas, micro-supercapacitors, and sensors) can be fabricated with high resolution and further integrated on various flat/curved substrates. The additive-free titanium carbide (Ti 3 C 2 T x ) MXene aqueous inks are regulated with large single-layer ratio (>90%) and narrow flake size distribution, offering metallic conductivity (~6, 900 S cm −1 ) in the ultrafine-printed tracks (3 μm line gap and 0.43% spatial uniformity) without annealing. In particular, we build an all-MXene-printed integrated system capable of wireless communication, energy harvesting, and smart sensing. This work opens a door for high-precision additive manufacturing of printed wireless electronics at room temperature.

39 citations

DOI
11 Nov 2021
TL;DR: In this paper, textile-integrated metamaterials are used to drive long-distance near-field communication (NFC)-based magneto-inductive waves along and between multiple objects.
Abstract: Wearable and implantable sensors can be linked together to create multi-node wireless networks that could be of use in the development of advanced healthcare monitoring technologies. Such body area networks require secure, seamless and versatile communication links that can operate across the complex human body, but they typically suffer from short ranges, low power or the need for direct-connection terminals. Here we show that textile-integrated metamaterials can be used to drive long-distance near-field communication (NFC)-based magneto-inductive waves along and between multiple objects. The metamaterials are built from arrays of discrete, anisotropic magneto-inductive elements, creating a mechanically flexible system capable of battery-free communication among NFC-enabled devices that are placed anywhere close to the network. Our approach offers a secure and on-demand body area network that has the potential for straightforward expansion and can span across different pieces of clothing, objects and people. Textile-integrated metamaterials can be used to drive long-distance near-field-communication-based magneto-inductive waves along and between multiple objects, creating a secure and on-demand body area network.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent development strategies and applications in nucleic acid-based, antibody/antigen-based and other affinity-based PADs using optical and electrochemical detection methods for sensing viruses.
Abstract: The importance of user-friendly, inexpensive, sensitive, and selective detection of viruses has been highlighted again due to the recent Coronavirus disease 2019 (COVID-19) pandemic. Among the analytical tools, paper-based devices (PADs) have become a leading alternative for point-of-care (POC) testing. In this review, we discuss the recent development strategies and applications in nucleic acid-based, antibody/antigen-based and other affinity-based PADs using optical and electrochemical detection methods for sensing viruses. In addition, advantages and drawbacks of presented PADs are identified. Current state and insights towards future perspectives are presented regarding developing POC diagnosis platform for COVID-19. This review considers state-of-the-art technologies for further development and improvement in PADs performance for virus detection.

34 citations

Journal ArticleDOI
01 Jan 2022
TL;DR: Paper-based sensors exploiting the advantages of paper can replace traditional substrate materials for building sensors which are simple to manufacture, inexpensive, easy-to-operate, portable and disposable as discussed by the authors .
Abstract: Paper-based sensors exploiting the advantages of paper can replace traditional substrate materials for building sensors which are simple to manufacture, inexpensive, easy-to-operate, portable and disposable. From clinical diagnostics and agriculture...

21 citations

References
More filters
Journal ArticleDOI
04 Feb 2016-Nature
TL;DR: Material, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction.
Abstract: Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body's abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.

694 citations

Journal ArticleDOI
TL;DR: Material and device concepts for flexible platforms that incorporate advanced optoelectronic functionality for applications in wireless capture and transmission of photoplethysmograms, including quantitative information on blood oxygenation, heart rate and heart rate variability are reported.
Abstract: Development of unconventional technologies for wireless collection, storage and analysis of quantitative, clinically relevant information on physiological status is of growing interest. Soft, biocompatible systems are widely regarded as important because they facilitate mounting on external (e.g. skin) and internal (e.g. heart, brain) surfaces of the body. Ultra-miniaturized, lightweight and battery-free devices have the potential to establish complementary options in bio-integration, where chronic interfaces (i.e. months) are possible on hard surfaces such as the fingernails and the teeth, with negligible risk for irritation or discomfort. Here we report materials and device concepts for flexible platforms that incorporate advanced optoelectronic functionality for applications in wireless capture and transmission of photoplethysmograms, including quantitative information on blood oxygenation, heart rate and heart rate variability. Specifically, reflectance pulse oximetry in conjunction with near-field communication (NFC) capabilities enables operation in thin, miniaturized flexible devices. Studies of the material aspects associated with the body interface, together with investigations of the radio frequency characteristics, the optoelectronic data acquisition approaches and the analysis methods capture all of the relevant engineering considerations. Demonstrations of operation on various locations of the body and quantitative comparisons to clinical gold standards establish the versatility and the measurement accuracy of these systems, respectively.

246 citations

Journal ArticleDOI
25 Jan 2018
TL;DR: Theoretical analyses of system-level bending mechanics show the advantages of WiSP’s flexible electronics, soft encapsulation layers and bioadhesives, enabling intimate skin coupling, and its physical attributes and performance results demonstrate its utility for monitoring cardiac signals during daily activity, exertion and sleep.
Abstract: Contemporary cardiac and heart rate monitoring devices capture physiological signals using optical and electrode-based sensors. However, these devices generally lack the form factor and mechanical flexibility necessary for use in ambulatory and home environments. Here, we report an ultrathin (~1 mm average thickness) and highly flexible wearable cardiac sensor (WiSP) designed to be minimal in cost (disposable), light weight (1.2 g), water resistant, and capable of wireless energy harvesting. Theoretical analyses of system-level bending mechanics show the advantages of WiSP’s flexible electronics, soft encapsulation layers and bioadhesives, enabling intimate skin coupling. A clinical feasibility study conducted in atrial fibrillation patients demonstrates that the WiSP device effectively measures cardiac signals matching the Holter monitor, and is more comfortable. WiSP’s physical attributes and performance results demonstrate its utility for monitoring cardiac signals during daily activity, exertion and sleep, with implications for home-based care. A highly flexible, low-power wearable sensor that harvests energy and monitors cardiac signals has been developed by Lee et al. The team was led by Dr. Roozbeh Ghaffari and co-workers at MC10 Inc. and Northwestern University’s Center for Bio-Integrated Electronics at the Simpson & Querrey Institute, in collaboration with the Massachusetts General Hospital and Tsinghua University. The novel wearable sensors measure cardiac signals comparable in signal fidelity to those achievable with expensive monitoring systems used in hospitals. Wearable health-care solutions are fundamentally changing the way we monitor our well-being at all times of the day, no matter whether we are asleep at home or busy at work. The sensors reported here are lightweight, inexpensive to manufacture, robust to everyday use, and capable of wireless data transmission and energy harvesting to and from a smartphone. The approach proved successful for measuring episodic electrocardiograms (ECG) and continuous heart rate signals with significantly higher patient comfort scores compared to standard Holter monitors in an initial pilot study conducted at the Massachusetts General Hospital (MGH).

142 citations

Journal ArticleDOI
TL;DR: An entirely wireless and fully implantable platform incorporating microscale optoelectronics for continuous sensing of local hemoglobin dynamics and advanced designs in continuous, wireless power delivery and data output for tether-free operation is introduced.
Abstract: Monitoring regional tissue oxygenation in animal models and potentially in human subjects can yield insights into the underlying mechanisms of local O2-mediated physiological processes and provide diagnostic and therapeutic guidance for relevant disease states. Existing technologies for tissue oxygenation assessments involve some combination of disadvantages in requirements for physical tethers, anesthetics, and special apparatus, often with confounding effects on the natural behaviors of test subjects. This work introduces an entirely wireless and fully implantable platform incorporating (i) microscale optoelectronics for continuous sensing of local hemoglobin dynamics and (ii) advanced designs in continuous, wireless power delivery and data output for tether-free operation. These features support in vivo, highly localized tissue oximetry at sites of interest, including deep brain regions of mice, on untethered, awake animal models. The results create many opportunities for studying various O2-mediated processes in naturally behaving subjects, with implications in biomedical research and clinical practice.

103 citations

Related Papers (5)