scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc

23 Feb 1996-Science (American Association for the Advancement of Science)-Vol. 271, Iss: 5252, pp 1081-1085
TL;DR: The ability of zinc to be bound specifically within a range of tetrahedral sites appears to be responsible for the evolution of the wide range of zinc-stabilized structural domains now known to exist.
Abstract: Zinc ions are key structural components of a large number of proteins. The binding of zinc stabilizes the folded conformations of domains so that they may facilitate interactions between the proteins and other macromolecules such as DNA. The modular nature of some of these zinc-containing proteins has allowed the rational design of site-specific DNA binding proteins. The ability of zinc to be bound specifically within a range of tetrahedral sites appears to be responsible for the evolution of the side range of zinc-stabilized structural domains now known to exist. The lack of redox activity for the zinc ion and its binding and exchange kinetics also may be important in the use of zinc for specific functional roles.
Citations
More filters
Journal ArticleDOI
15 Dec 2000-Science
TL;DR: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms and reveals the evolutionary generation of diversity in the regulation of transcription.
Abstract: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

2,582 citations

Journal ArticleDOI
TL;DR: The WRKY proteins are a superfamily of transcription factors with up to 100 representatives in Arabidopsis that appear to be involved in the regulation of various physio-logical programs that are unique to plants, including pathogen defense, senescence and trichome development.

2,447 citations

Journal ArticleDOI
TL;DR: The authors present here a classification and structure/function analysis of native metal sites based on these functions, and the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized.
Abstract: For present purposes, a protein-bound metal site consists of one or more metal ions and all protein side chain and exogenous bridging and terminal ligands that define the first coordination sphere of each metal ion. Such sites can be classified into five basic types with the indicated functions: (1) structural -- configuration (in part) of protein tertiary and/or quaternary structure; (2) storage -- uptake, binding, and release of metals in soluble form: (3) electron transfer -- uptake, release, and storage of electrons; (4) dioxygen binding -- metal-O{sub 2} coordination and decoordination; and (5) catalytic -- substrate binding, activation, and turnover. The authors present here a classification and structure/function analysis of native metal sites based on these functions, where 5 is an extensive class subdivided by the type of reaction catalyzed. Within this purview, coverage of the various site types is extensive, but not exhaustive. The purpose of this exposition is to present examples of all types of sites and to relate, insofar as is currently feasible, the structure and function of selected types. The authors largely confine their considerations to the sites themselves, with due recognition that these site features are coupled to protein structure at all levels. In themore » next section, the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized. Structure/function relationships are systematically explored and tabulations of structurally defined sites presented. Finally, future directions in bioinorganic research in the context of metal site chemistry are considered. 620 refs.« less

2,242 citations

Journal ArticleDOI
TL;DR: Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China.
Abstract: Yuming Yang,†,§ Qiang Zhao,‡,§ Wei Feng,† and Fuyou Li*,† †Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China ‡Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China.

1,999 citations

Journal ArticleDOI
TL;DR: The brain is a singular organ of unique biological complexity that serves as the command center for cognitive and motor function and has requirements for the highest concentrations of metal ions in the body and the highest per-weight consumption of body oxygen.
Abstract: The brain is a singular organ of unique biological complexity that serves as the command center for cognitive and motor function. As such, this specialized system also possesses a unique chemical composition and reactivity at the molecular level. In this regard, two vital distinguishing features of the brain are its requirements for the highest concentrations of metal ions in the body and the highest per-weight consumption of body oxygen. In humans, the brain accounts for only 2% of total body mass but consumes 20% of the oxygen that is taken in through respiration. As a consequence of high oxygen demand and cell complexity, distinctly high metal levels pervade all regions of the brain and central nervous system. Structural roles for metal ions in the brain and the body include the stabilization of biomolecules in static (e.g., Mg2+ for nucleic acid folds, Zn2+ in zinc-finger transcription factors) or dynamic (e.g., Na+ and K+ in ion channels, Ca2+ in neuronal cell signaling) modes, and catalytic roles for brain metal ions are also numerous and often of special demand.

1,814 citations

References
More filters
Journal ArticleDOI
TL;DR: The MOLSCRIPT program as discussed by the authors produces plots of protein structures using several different kinds of representations, including simple wire models, ball-and-stick models, CPK models and text labels.
Abstract: The MOLSCRIPT program produces plots of protein structures using several different kinds of representations. Schematic drawings, simple wire models, ball-and-stick models, CPK models and text labels can be mixed freely. The schematic drawings are shaded to improve the illusion of three dimensionality. A number of parameters affecting various aspects of the objects drawn can be changed by the user. The output from the program is in PostScript format.

13,971 citations

Journal ArticleDOI
13 May 1988-Science
TL;DR: A superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid is identified, suggesting mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.
Abstract: Analyses of steroid receptors are important for understanding molecular details of transcriptional control, as well as providing insight as to how an individual transacting factor contributes to cell identity and function. These studies have led to the identification of a superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid. Although animals employ complex and often distinct ways to control their physiology and development, the discovery of receptor-related molecules in a wide range of species suggests that mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.

7,493 citations

Journal ArticleDOI
20 Jul 1989-Nature
TL;DR: A novel genetic system to study protein-protein interactions between two proteins by taking advantage of the properties of the GAL4 protein of the yeast Saccharomyces cerevisiae, which may be applicable as a general method to identify proteins that interact with a known protein by the use of a simple galactose selection.
Abstract: Protein-protein interactions between two proteins have generally been studied using biochemical techniques such as crosslinking, co-immunoprecipitation and co-fractionation by chromatography. We have generated a novel genetic system to study these interactions by taking advantage of the properties of the GAL4 protein of the yeast Saccharomyces cerevisiae. This protein is a transcriptional activator required for the expression of genes encoding enzymes of galactose utilization. It consists of two separable and functionally essential domains: an N-terminal domain which binds to specific DNA sequences (UASG); and a C-terminal domain containing acidic regions, which is necessary to activate transcription. We have generated a system of two hybrid proteins containing parts of GAL4: the GAL4 DNA-binding domain fused to a protein 'X' and a GAL4 activating region fused to a protein 'Y'. If X and Y can form a protein-protein complex and reconstitute proximity of the GAL4 domains, transcription of a gene regulated by UASG occurs. We have tested this system using two yeast proteins that are known to interact--SNF1 and SNF4. High transcriptional activity is obtained only when both hybrids are present in a cell. This system may be applicable as a general method to identify proteins that interact with a known protein by the use of a simple galactose selection.

6,529 citations

Journal ArticleDOI
07 Oct 1994-Science
TL;DR: A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods.
Abstract: A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.

6,118 citations