scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The global burden of thyroid cancer and its attributable risk factor in 195 countries and territories: A systematic analysis for the Global Burden of Disease Study

Mimi Zhai1, Dan Zhang1, Jianhai Long, Yi Gong1, Fei Ye1, Sushun Liu1, Yamin Li1 
18 May 2021-Cancer Medicine (John Wiley & Sons, Ltd)-Vol. 10, Iss: 13, pp 4542-4554
TL;DR: In this article, the authors explored the trend and relationship of thyroid cancer and its relationship with social development factors based on GBD and found that thyroid cancer peaked in middle-aged people while the mortality and DALY peaked in elder-aged.
Abstract: Background Thyroid cancer is a growing threat to human health. Few studies have explored trends of thyroid cancer and relationships with social development factors. In this study, we explored the trend and relationship based on GBD. Methods By using GBD study, we obtained detailed data of thyroid cancer. Incidence, mortality and DALY were used to assess epidemiological characteristics. ASR and EAPC were used to estimate the trend. Results Globally, the incidence significantly increased from 1990 to 2017, especially in high-income regions. Males and middle SDI region demonstrated a higher increase of age-standardized incidence rates. Unlike incidence trend, mortality trend showed a minor increase, and even showed a decreasing trend in some regions such as Eastern Sub-Saharan Africa. Additionally, the DALY trend also demonstrated a slightly increase with an EAPC of 0.77 (95% CI 0.73-0.81). More significant increase of DALY was found in males, middle SDI region and high-income Asia Pacific. The incidence of thyroid cancer peaked in middle-aged people, while the mortality and DALY peaked in elder-aged. Moreover, the proportion of thyroid cancer deaths contributable to high BMI was highest in developed countries and middle-aged people. Conclusions Thyroid cancer is a public health problem worldwide. Over-diagnosis might be partly responsible for its rising trend. It remains us to revise the guidelines to avoid unnecessary burdens. Moreover, we should pay attention to the risk factors of thyroid cancer. More targeted measures should be formulated to improve potential environmental and lifestyle-related factors which might contribute to rising trend of thyroid cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used the Global Burden of Disease (GBD) study from between 1990 and 2019 to model how thyroid cancer will affect China until 2039 by conducting the Bayesian age-period-cohort analysis.
Abstract: Projecting the burden of thyroid cancer (TC) over time provides essential information to effectively plan measures for its management and prevention. This research obtained data from the Global Burden of Disease (GBD) Study from between 1990 and 2019 to model how TC will affect China until 2039 by conducting the Bayesian age-period-cohort analysis. The number of new TC cases in China was 10,030 in 1990, 39,080 in 2019, and is projected to be 47,820 in 2039. This corresponds to 3,320, 7,240, and 4,160 deaths, respectively. Disability-adjusted life years (DALYs) cases increased from 103,490 in 1990 to 187,320 in 2019. The age-standardized rate (ASR) of incidence increased from 1.01 to 2.05 during 1990-2019 and was projected to increase to 3.37 per 100,000 person-years until 2039. The ASR of mortality (ASMR) remained stable during the study period and was projected to have a mild decline from 0.39 to 0.29/100,000 during 2020-2039. Although the ASMR in male patients has maintained increasing at a rate of 2.2% per year over the past 30 years, it is expected to decline at a rate of 1.07% per year in 2019-2039. The most significant increase in crude incidence occurred in people aged 45-65 from 1990 to 2019, however, this will shift into young people aged 10-24 from 2020 to 2039. In addition, the proportion of deaths and DALYs caused by obesity increased from 1990 to 2019 and affected men more than women. In conclusion, a substantial increase in counts of incidence of TC in China is projected over the next two decades, combined with the slightly declining mortality, indicating that rational health policies are needed in the future to cope with the increasing number of TC patients, especially among males and adolescents.

20 citations

Journal ArticleDOI
TL;DR: In this article, a pre-operative sonogram was used to identify the preparative risk factors for CLN metastasis in PTC patients concurrent with Hashimoto's thyroiditis (HT), especially in terms of the central lymph node (CLN) dissection.
Abstract: Background The preoperative distinguishment of lymph nodes with reactive hyperplasia or tumor metastasis plays a pivotal role in guiding the surgical extension for papillary thyroid carcinoma (PTC) with Hashimoto's thyroiditis (HT), especially in terms of the central lymph node (CLN) dissection. We aim to identify the preparative risk factors for CLN metastasis in PTC patients concurrent with HT. Materials and methods We retrospectively reviewed and analyzed the data including the basic information, preoperative sonographic characteristics, and thyroid function of consecutive PTC patients with HT in our medical center between Jan 2019 and Apr 2021. The Chi-square and Fisher's exact tests were used for comparison of qualitative variables among patients with or without CLN metastasis. Univariate and multivariate logistic regression analyses were used to determine the risk factors for CLN metastasis. The nomogram was constructed and further evaluated by two cohorts produced by 1,000 resampling bootstrap analysis. Results A total of 98 in 214 (45.8%) PTC patients were identified with CLN metastasis. In multivariate analysis, four variables including high serum thyroglobulin antibody (TgAb) level (>1,150 IU/ml), lower tumor location, irregular margin of CLN, and micro-calcification in the CLN were determined to be significantly associated with the CLN metastasis in PTC patients with HT. An individualized nomogram was consequently established with a favorable C-index of 0.815 and verified via two internal validation cohorts. Conclusions Our results indicated that preoperatively sonographic characteristics of the tumor and lymph node condition combined with serum TgAb level can significantly predict the CLN in PTC patients with HT and the novel nomogram may further help surgeons to manage the CLN in this subpopulation.

15 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used univariate and multivariate logistic regression analyses to determine the risk factors for high volume of central lymph node metastasis in Papillary thyroid microcarcinoma (PTMC) patients.
Abstract: Papillary thyroid microcarcinoma (PTMC) frequently presents a favorable clinical outcome, while aggressive invasiveness can also be found in some of this population. Identifying the risk clinical factors of high-volume (> 5) central lymph node metastasis (CLNM) in PTMC patients could help oncologists make a better-individualized clinical decision. We retrospectively reviewed the clinical characteristics of adult patients with PTC in the Surveillance, Epidemiology, and End Results (SEER) database between Jan 2010 and Dec 2015 and in one medical center affiliated to Chongqing Medical University between Jan 2018 and Oct 2020. Univariate and multivariate logistic regression analyses were used to determine the risk factors for high volume of CLNM in PTMC patients. The male gender (OR = 2.02, 95% CI 1.46–2.81), larger tumor size (> 5 mm, OR = 1.64, 95% CI 1.13–2.38), multifocality (OR = 1.87, 95% CI 1.40–2.51), and extrathyroidal invasion (OR = 3.67; 95% CI 2.64–5.10) were independent risk factors in promoting high-volume of CLNM in PTMC patients. By contrast, elderly age (≥ 55 years) at diagnosis (OR = 0.57, 95% CI 0.40–0.81) and PTMC-follicular variate (OR = 0.60, 95% CI 0.42–0.87) were determined as the protective factors. Based on these indicators, a nomogram was further constructed with a good concordance index (C-index) of 0.702, supported by an external validating cohort with a promising C-index of 0.811. A nomogram was successfully established and validated with six clinical indicators. This model could help surgeons to make a better-individualized clinical decision on the management of PTMC patients, especially in terms of whether prophylactic central lymph node dissection and postoperative radiotherapy should be warranted.

11 citations

Journal ArticleDOI
Wen-Qi Bao1, Hao Zi1, Qian-Qian Yuan1, Lu-Yao Li1, Lu-Yao Li2, Tong Deng1 
TL;DR: In this paper, the authors investigated the burden of thyroid cancer and its attributable risk factors in 204 countries and territories during 30 years and found that the burden was mainly concentrated in females and that the age of onset tended to be younger.
Abstract: Background To investigate the burden of thyroid cancer and its attributable risk factors in 204 countries and territories during 30 years. Methods We extracted data from the Global Burden of Disease (GBD) 2019 database, including incidence, mortality, disability-adjusted life-years (DALYs), and the attributable risk factors of thyroid cancer from 1990 to 2019. Estimated annual percentage changes (EAPC) were calculated to assess the changes in age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR), and age-standardized DALYs rate (ASDR). We also examined the associations between cancer burden and the sociodemographic index (SDI). Results The global new cases, death, and DALYs of thyroid cancer in 2019 were 233 847 (95% UI: 211 637-252 807), 45 576 (95% UI: 41 290-48 775), and 1 231 841 (95% UI: 1 113 585-1 327 064), respectively. From 1990 to 2019, the ASIR of thyroid cancer showed an upward trend (EAPC = 1.25), but ASMR (EAPC = -0.15) and ASDR (EAPC = -0.14) decreased. The burden of thyroid cancer varied at regional and national levels, but the association between ASIR and SDI was positive. We found that the burden of thyroid cancer was mainly concentrated in females and that the age of onset tended to be younger. The proportion of DALYs from thyroid cancer attributable to high body-mass index was higher in high SDI regions, especially in males. Conclusions The global incidence of thyroid cancer has continued to increase in the past three decades. The high body-mass index as an important risk factor for thyroid cancer deserves greater attention, especially in high SDI regions.

10 citations

Journal ArticleDOI
18 Nov 2021-Cancers
TL;DR: In this paper, a review dissects the association between COVID-19 and thyroid cancer (TC), especially with differentiated TC (DTC), focusing on available data, knowledge gaps, current challenges, and future perspectives.
Abstract: Background: Conceived of as the “silver lining” of the dark cloud of the coronavirus disease 2019 (COVID-19) pandemic, lessons taught by this catastrophe should be leveraged by medical authorities and policy makers to optimize health care globally. A major lesson is that resilient health systems should absorb sudden shocks incited by overwhelming health emergencies without compromising the continuum of care of chronic diseases, especially of cancer. Methods: The present review dissects the association between COVID-19 and thyroid cancer (TC), especially with differentiated TC (DTC), focusing on available data, knowledge gaps, current challenges, and future perspectives. Results: Obesity has been incriminated in terms of both COVID-19 severity and a rising incidence of TC, especially of DTC. The current conceptualization of the pathophysiological landscape of COVID-19–(D)TC association implicates an interplay between obesity, inflammation, immunity, and oxidative stress. Whether COVID-19 could aggravate the health burden posed by (D)TC or vice versa has yet to be clarified. Improved understanding and harnessing of the pathophysiological landscape of the COVID-19–(D)TC association will empower a mechanism-guided, safe, evidence-based, and risk-stratified management of (D)TC in the COVID-19 era and beyond. Conclusion: A multidisciplinary patient-centered decision-making will ensure high-quality (D)TC care for patients, with or without COVID-19.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
Marie Ng1, Tom P Fleming1, Margaret Robinson1, Blake Thomson1, Nicholas Graetz1, Christopher Margono1, Erin C Mullany1, Stan Biryukov1, Cristiana Abbafati2, Semaw Ferede Abera3, Jerry Abraham4, Niveen M E Abu-Rmeileh, Tom Achoki1, Fadia AlBuhairan5, Zewdie Aderaw Alemu6, Rafael Alfonso1, Mohammed K. Ali7, Raghib Ali8, Nelson Alvis Guzmán9, Walid Ammar, Palwasha Anwari10, Amitava Banerjee11, Simón Barquera, Sanjay Basu12, Derrick A Bennett8, Zulfiqar A Bhutta13, Jed D. Blore14, N Cabral, Ismael Ricardo Campos Nonato, Jung-Chen Chang15, Rajiv Chowdhury16, Karen J. Courville, Michael H. Criqui17, David K. Cundiff, Kaustubh Dabhadkar7, Lalit Dandona1, Lalit Dandona18, Adrian Davis19, Anand Dayama7, Samath D Dharmaratne20, Eric L. Ding21, Adnan M. Durrani22, Alireza Esteghamati23, Farshad Farzadfar23, Derek F J Fay19, Valery L. Feigin24, Abraham D. Flaxman1, Mohammad H. Forouzanfar1, Atsushi Goto, Mark A. Green25, Rajeev Gupta, Nima Hafezi-Nejad23, Graeme J. Hankey26, Heather Harewood, Rasmus Havmoeller27, Simon I. Hay8, Lucia Hernandez, Abdullatif Husseini28, Bulat Idrisov29, Nayu Ikeda, Farhad Islami30, Eiman Jahangir31, Simerjot K. Jassal17, Sun Ha Jee32, Mona Jeffreys33, Jost B. Jonas34, Edmond K. Kabagambe35, Shams Eldin Ali Hassan Khalifa, Andre Pascal Kengne36, Yousef Khader37, Young-Ho Khang38, Daniel Kim39, Ruth W Kimokoti40, Jonas Minet Kinge41, Yoshihiro Kokubo, Soewarta Kosen, Gene F. Kwan42, Taavi Lai, Mall Leinsalu22, Yichong Li, Xiaofeng Liang43, Shiwei Liu43, Giancarlo Logroscino44, Paulo A. Lotufo45, Yuan Qiang Lu21, Jixiang Ma43, Nana Kwaku Mainoo, George A. Mensah22, Tony R. Merriman46, Ali H. Mokdad1, Joanna Moschandreas47, Mohsen Naghavi1, Aliya Naheed48, Devina Nand, K.M. Venkat Narayan7, Erica Leigh Nelson1, Marian L. Neuhouser49, Muhammad Imran Nisar13, Takayoshi Ohkubo50, Samuel Oti, Andrea Pedroza, Dorairaj Prabhakaran, Nobhojit Roy51, Uchechukwu K.A. Sampson35, Hyeyoung Seo, Sadaf G. Sepanlou23, Kenji Shibuya52, Rahman Shiri53, Ivy Shiue54, Gitanjali M Singh21, Jasvinder A. Singh55, Vegard Skirbekk41, Nicolas J. C. Stapelberg56, Lela Sturua57, Bryan L. Sykes58, Martin Tobias1, Bach Xuan Tran59, Leonardo Trasande60, Hideaki Toyoshima, Steven van de Vijver, Tommi Vasankari, J. Lennert Veerman61, Gustavo Velasquez-Melendez62, Vasiliy Victorovich Vlassov63, Stein Emil Vollset41, Stein Emil Vollset64, Theo Vos1, Claire L. Wang65, Xiao Rong Wang66, Elisabete Weiderpass, Andrea Werdecker, Jonathan L. Wright1, Y Claire Yang67, Hiroshi Yatsuya68, Jihyun Yoon, Seok Jun Yoon69, Yong Zhao70, Maigeng Zhou, Shankuan Zhu71, Alan D. Lopez14, Christopher J L Murray1, Emmanuela Gakidou1 
University of Washington1, Sapienza University of Rome2, Mekelle University3, University of Texas at San Antonio4, King Saud bin Abdulaziz University for Health Sciences5, Debre markos University6, Emory University7, University of Oxford8, University of Cartagena9, United Nations Population Fund10, University of Birmingham11, Stanford University12, Aga Khan University13, University of Melbourne14, National Taiwan University15, University of Cambridge16, University of California, San Diego17, Public Health Foundation of India18, Public Health England19, University of Peradeniya20, Harvard University21, National Institutes of Health22, Tehran University of Medical Sciences23, Auckland University of Technology24, University of Sheffield25, University of Western Australia26, Karolinska Institutet27, Birzeit University28, Brandeis University29, American Cancer Society30, Ochsner Medical Center31, Yonsei University32, University of Bristol33, Heidelberg University34, Vanderbilt University35, South African Medical Research Council36, Jordan University of Science and Technology37, New Generation University College38, Northeastern University39, Simmons College40, Norwegian Institute of Public Health41, Boston University42, Chinese Center for Disease Control and Prevention43, University of Bari44, University of São Paulo45, University of Otago46, University of Crete47, International Centre for Diarrhoeal Disease Research, Bangladesh48, Fred Hutchinson Cancer Research Center49, Teikyo University50, Bhabha Atomic Research Centre51, University of Tokyo52, Finnish Institute of Occupational Health53, Heriot-Watt University54, University of Alabama at Birmingham55, Griffith University56, National Center for Disease Control and Public Health57, University of California, Irvine58, Johns Hopkins University59, New York University60, University of Queensland61, Universidade Federal de Minas Gerais62, National Research University – Higher School of Economics63, University of Bergen64, Columbia University65, Shandong University66, University of North Carolina at Chapel Hill67, Fujita Health University68, Korea University69, Chongqing Medical University70, Zhejiang University71
TL;DR: The global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013 is estimated using a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs).

9,180 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the burden of 29 cancer groups over time to provide a framework for policy discussion, resource allocation, and research focus, and evaluate cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs) for 195 countries and territories by age and sex using the Global Burden of Disease study estimation methods.
Abstract: Importance The increasing burden due to cancer and other noncommunicable diseases poses a threat to human development, which has resulted in global political commitments reflected in the Sustainable Development Goals as well as the World Health Organization (WHO) Global Action Plan on Non-Communicable Diseases. To determine if these commitments have resulted in improved cancer control, quantitative assessments of the cancer burden are required. Objective To assess the burden for 29 cancer groups over time to provide a framework for policy discussion, resource allocation, and research focus. Evidence Review Cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs) were evaluated for 195 countries and territories by age and sex using the Global Burden of Disease study estimation methods. Levels and trends were analyzed over time, as well as by the Sociodemographic Index (SDI). Changes in incident cases were categorized by changes due to epidemiological vs demographic transition. Findings In 2016, there were 17.2 million cancer cases worldwide and 8.9 million deaths. Cancer cases increased by 28% between 2006 and 2016. The smallest increase was seen in high SDI countries. Globally, population aging contributed 17%; population growth, 12%; and changes in age-specific rates, −1% to this change. The most common incident cancer globally for men was prostate cancer (1.4 million cases). The leading cause of cancer deaths and DALYs was tracheal, bronchus, and lung cancer (1.2 million deaths and 25.4 million DALYs). For women, the most common incident cancer and the leading cause of cancer deaths and DALYs was breast cancer (1.7 million incident cases, 535 000 deaths, and 14.9 million DALYs). In 2016, cancer caused 213.2 million DALYs globally for both sexes combined. Between 2006 and 2016, the average annual age-standardized incidence rates for all cancers combined increased in 130 of 195 countries or territories, and the average annual age-standardized death rates decreased within that timeframe in 143 of 195 countries or territories. Conclusions and Relevance Large disparities exist between countries in cancer incidence, deaths, and associated disability. Scaling up cancer prevention and ensuring universal access to cancer care are required for health equity and to fulfill the global commitments for noncommunicable disease and cancer control.

4,621 citations

Journal ArticleDOI
10 May 2006-JAMA
TL;DR: In this article, the authors examined trends in thyroid cancer incidence, histology, size distribution, and mortality in the United States, concluding that the increasing incidence of thyroid cancer is primarily due to the increased detection of small papillary cancers.
Abstract: ContextIncreasing cancer incidence is typically interpreted as an increase in the true occurrence of disease but may also reflect changing pathological criteria or increased diagnostic scrutiny. Changes in the diagnostic approach to thyroid nodules may have resulted in an increase in the apparent incidence of thyroid cancer.ObjectiveTo examine trends in thyroid cancer incidence, histology, size distribution, and mortality in the United States.MethodsRetrospective cohort evaluation of patients with thyroid cancer, 1973-2002, using the Surveillance, Epidemiology, and End Results (SEER) program and data on thyroid cancer mortality from the National Vital Statistics System.Main Outcome MeasuresThyroid cancer incidence, histology, size distribution, and mortality.ResultsThe incidence of thyroid cancer increased from 3.6 per 100 000 in 1973 to 8.7 per 100 000 in 2002—a 2.4-fold increase (95% confidence interval [CI], 2.2-2.6; P .20 for trend). Virtually the entire increase is attributable to an increase in incidence of papillary thyroid cancer, which increased from 2.7 to 7.7 per 100 000—a 2.9-fold increase (95% CI, 2.6-3.2; P<.001 for trend). Between 1988 (the first year SEER collected data on tumor size) and 2002, 49% (95% CI, 47%-51%) of the increase consisted of cancers measuring 1 cm or smaller; 87% (95% CI, 85%-89%) consisted of cancers measuring 2 cm or smaller. Mortality from thyroid cancer was stable between 1973 and 2002 (approximately 0.5 deaths per 100 000).ConclusionsThe increasing incidence of thyroid cancer in the United States is predominantly due to the increased detection of small papillary cancers. These trends, combined with the known existence of a substantial reservoir of subclinical cancer and stable overall mortality, suggest that increasing incidence reflects increased detection of subclinical disease, not an increase in the true occurrence of thyroid cancer.

3,071 citations

Journal ArticleDOI
TL;DR: The Global Burden of Disease (GBD) study as discussed by the authors has been used to describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning, including cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs).
Abstract: Importance Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs). Conclusions and Relevance The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer

1,320 citations

Related Papers (5)