scispace - formally typeset
Search or ask a question
Book ChapterDOI

The Global Distribution of Yellow Fever and Dengue

01 Jan 2006-Advances in Parasitology (Adv Parasitol)-Vol. 62, pp 181-220
TL;DR: Records of the occurrence of both yellow fever and Dengue during the 20th century have been collected together and are used to define their climatic limits using remotely sensed satellite data within a discriminant analytical model framework.
Abstract: Yellow fever has been subjected to partial control for decades, but there are signs that case numbers are now increasing globally, with the risk of local epidemic outbreaks. Dengue case numbers have also increased dramatically during the past 40 years and different serotypes have invaded new geographical areas. Despite the temporal changes in these closely related diseases, and their enormous public health impact, few attempts have been made to collect a comprehensive dataset of their spatial and temporal distributions. For this review, records of the occurrence of both diseases during the 20th century have been collected together and are used to define their climatic limits using remotely sensed satellite data within a discriminant analytical model framework. The resulting risk maps for these two diseases identify their different environmental requirements, and throw some light on their potential for co-occurrence in Africa and South East Asia.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.
Abstract: Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.

7,238 citations


Cites background from "The Global Distribution of Yellow F..."

  • ...The Americas contributed 14% (13 [9-18] million infections) of apparent infections worldwide, of which over half occurred in Brazil and Mexico....

    [...]

Journal ArticleDOI
TL;DR: A contemporary global map of national-level dengue status is generated that assigns a relative measure of certainty and identifies gaps in the available evidence and provides a preliminary estimate of population at risk with an upper bound of 3.97 billion people.
Abstract: Background: Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. Methods/Principal Findings: A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. Conclusion: The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work.

1,318 citations


Cites methods from "The Global Distribution of Yellow F..."

  • ...Several approaches have been used to map biological suitability for dengue using non-dengue-specific variables such as temperature, rainfall and satellite-derived environmental variables [1,10,11]....

    [...]

Journal ArticleDOI
TL;DR: This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability and provide a key missing piece of evidence for the changing global threat of vector-borne disease.
Abstract: Dengue is a mosquito-borne viral infection that has spread throughout the tropical world over the past 60 years and now affects over half the world's population. The geographical range of dengue is expected to further expand due to ongoing global phenomena including climate change and urbanization. We applied statistical mapping techniques to the most extensive database of case locations to date to predict global environmental suitability for the virus as of 2015. We then made use of climate, population and socioeconomic projections for the years 2020, 2050 and 2080 to project future changes in virus suitability and human population at risk. This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability. Our projections provide a key missing piece of evidence for the changing global threat of vector-borne disease and will help decision-makers worldwide to better prepare for and respond to future changes in dengue risk.

557 citations

Journal ArticleDOI
12 Aug 2016-Science
TL;DR: The empirical evidence for a global threat from ZIKV is examined through the lens of these processes, examining historic and current evidence, as well as parallel processes in closely related viruses.
Abstract: First discovered in 1947, Zika virus (ZIKV) infection remained a little-known tropical disease until 2015, when its apparent association with a considerable increase in the incidence of microcephaly in Brazil raised alarms worldwide. There is limited information on the key factors that determine the extent of the global threat from ZIKV infection and resulting complications. Here, we review what is known about the epidemiology, natural history, and public health effects of ZIKV infection, the empirical basis for this knowledge, and the critical knowledge gaps that need to be filled.

343 citations


Additional excerpts

  • ...Furthermore, occasional but consistent serologic and virologic evidence of ZIKV transmission in humans and mosquitoes from across Africa, India, and Southeast Asia spanning more than 60 years suggests that ZIKV has been persistently present throughout these regions (22) (Fig....

    [...]

  • ...Likewise, it is possible that small ZIKV epidemics, and even invasion into Southeast Asia in the mid-1900s, resulted in effects that were unnoticed against the backdrop of other infectious diseases, particularly because small population sizes (compared to Brazil) mean that excess microcephaly cases would likely be in the hundreds (or less) in any given country....

    [...]

  • ..., yellow fever in Southeast Asia) (110)....

    [...]

  • ...In the decades after its discovery, intermittent serosurveys continued to find evidence of ZIKV infection in humans in Africa (27–29), the Indian subcontinent (30), and Southeast Asia (16, 31, 32)....

    [...]

  • ...Whether ZIKV will in fact spread throughout these areas is uncertain; similar viruses have failed to spread to or take hold in areas theoretically at risk (e.g., yellow fever in Southeast Asia) (110)....

    [...]

Journal ArticleDOI
TL;DR: This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that allowed anticipation of possible changes in distributional patterns into the future.
Abstract: Numerous recent studies have illuminated global distributions of human cases of dengue and other mosquito-transmitted diseases, yet the potential distributions of key vector species have not been incorporated integrally into those mapping efforts. Projections onto future conditions to illuminate potential distributional shifts in coming decades are similarly lacking, at least outside Europe. This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that, in turn, allowed anticipation of possible changes in distributional patterns into the future. Results indicated complex global rearrangements of potential distributional areas, which—given the impressive dispersal abilities of these two species—are likely to translate into actual distributional shifts. This exercise also signalled a crucial priority: digitization and sharing of existing distributional data so that models of this sort can be developed more rigorously, as present availability of such data is fragmentary and woefully incomplete.

305 citations


Cites background from "The Global Distribution of Yellow F..."

  • ...The global distributional potential of mosquito-borne viruses has seen considerable research attention in recent years, particularly as regards viruses transmitted by Aedes mosquitoes [1–5]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A general statistical methodology for the analysis of multivariate categorical data arising from observer reliability studies is presented and tests for interobserver bias are presented in terms of first-order marginal homogeneity and measures of interob server agreement are developed as generalized kappa-type statistics.
Abstract: This paper presents a general statistical methodology for the analysis of multivariate categorical data arising from observer reliability studies. The procedure essentially involves the construction of functions of the observed proportions which are directed at the extent to which the observers agree among themselves and the construction of test statistics for hypotheses involving these functions. Tests for interobserver bias are presented in terms of first-order marginal homogeneity and measures of interobserver agreement are developed as generalized kappa-type statistics. These procedures are illustrated with a clinical diagnosis example from the epidemiological literature.

64,109 citations


"The Global Distribution of Yellow F..." refers background in this paper

  • ...Kappa varies from −1 (predictions completely opposite to observations) through 0 (model fit no better than random) to 1 (perfect fit) and Landis and Koch (1977) suggest the following ranges of agreement for the kappa statistic: poor, κ<0.4; good, 0.4<κ<0.75 and excellent, κ>0.75....

    [...]

Book
19 Jun 2013
TL;DR: The second edition of this book is unique in that it focuses on methods for making formal statistical inference from all the models in an a priori set (Multi-Model Inference).
Abstract: Introduction * Information and Likelihood Theory: A Basis for Model Selection and Inference * Basic Use of the Information-Theoretic Approach * Formal Inference From More Than One Model: Multi-Model Inference (MMI) * Monte Carlo Insights and Extended Examples * Statistical Theory and Numerical Results * Summary

36,993 citations

Journal ArticleDOI
TL;DR: This paper reviews the necessary considerations and available techniques for assessing the accuracy of remotely sensed data including the classification system, the sampling scheme, the sample size, spatial autocorrelation, and the assessment techniques.

6,747 citations


"The Global Distribution of Yellow F..." refers methods in this paper

  • ...The thresholded versions of the maps were used to calculate the kappa index (κ) of model fit (Congalton, 1991; Ma and Redmond, 1995), which is based on the matrix of observed and predicted presences and absences of each model’s bootstrap sample of the training set data....

    [...]

Journal ArticleDOI
TL;DR: A review of the changing epidemiology of dengue and hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both Dengue fever and DVF, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control can be found in this paper.
Abstract: Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to devleop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever.

3,886 citations

Related Papers (5)