scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The global methane budget 2000–2017

Marielle Saunois1, Ann R. Stavert2, Ben Poulter3, Philippe Bousquet1, Josep G. Canadell2, Robert B. Jackson4, Peter A. Raymond5, Edward J. Dlugokencky6, Sander Houweling7, Sander Houweling8, Prabir K. Patra9, Prabir K. Patra10, Philippe Ciais1, Vivek K. Arora, David Bastviken11, Peter Bergamaschi, Donald R. Blake12, Gordon Brailsford13, Lori Bruhwiler6, Kimberly M. Carlson14, Mark Carrol3, Simona Castaldi15, Naveen Chandra10, Cyril Crevoisier16, Patrick M. Crill17, Kristofer R. Covey18, Charles L. Curry19, Giuseppe Etiope20, Giuseppe Etiope21, Christian Frankenberg22, Nicola Gedney23, Michaela I. Hegglin24, Lena Höglund-Isaksson25, Gustaf Hugelius17, Misa Ishizawa26, Akihiko Ito26, Greet Janssens-Maenhout, Katherine M. Jensen27, Fortunat Joos28, Thomas Kleinen29, Paul B. Krummel2, Ray L. Langenfelds2, Goulven Gildas Laruelle, Licheng Liu30, Toshinobu Machida26, Shamil Maksyutov26, Kyle C. McDonald27, Joe McNorton31, Paul A. Miller32, Joe R. Melton, Isamu Morino26, Jurek Müller28, Fabiola Murguia-Flores33, Vaishali Naik34, Yosuke Niwa26, Sergio Noce, Simon O'Doherty33, Robert J. Parker35, Changhui Peng36, Shushi Peng37, Glen P. Peters, Catherine Prigent, Ronald G. Prinn38, Michel Ramonet1, Pierre Regnier, William J. Riley39, Judith A. Rosentreter40, Arjo Segers, Isobel J. Simpson12, Hao Shi41, Steven J. Smith42, L. Paul Steele2, Brett F. Thornton17, Hanqin Tian41, Yasunori Tohjima26, Francesco N. Tubiello43, Aki Tsuruta44, Nicolas Viovy1, Apostolos Voulgarakis45, Apostolos Voulgarakis46, Thomas Weber47, Michiel van Weele48, Guido R. van der Werf7, Ray F. Weiss49, Doug Worthy, Debra Wunch50, Yi Yin22, Yi Yin1, Yukio Yoshida26, Weiya Zhang32, Zhen Zhang51, Yuanhong Zhao1, Bo Zheng1, Qing Zhu39, Qiuan Zhu52, Qianlai Zhuang30 
Université Paris-Saclay1, Commonwealth Scientific and Industrial Research Organisation2, Goddard Space Flight Center3, Stanford University4, Yale University5, National Oceanic and Atmospheric Administration6, VU University Amsterdam7, Netherlands Institute for Space Research8, Chiba University9, Japan Agency for Marine-Earth Science and Technology10, Linköping University11, University of California, Irvine12, National Institute of Water and Atmospheric Research13, New York University14, Seconda Università degli Studi di Napoli15, École Polytechnique16, Stockholm University17, Skidmore College18, University of Victoria19, Babeș-Bolyai University20, National Institute of Geophysics and Volcanology21, California Institute of Technology22, Met Office23, University of Reading24, International Institute for Applied Systems Analysis25, National Institute for Environmental Studies26, City University of New York27, University of Bern28, Max Planck Society29, Purdue University30, European Centre for Medium-Range Weather Forecasts31, Lund University32, University of Bristol33, Geophysical Fluid Dynamics Laboratory34, University of Leicester35, Université du Québec à Montréal36, Peking University37, Massachusetts Institute of Technology38, Lawrence Berkeley National Laboratory39, Southern Cross University40, Auburn University41, Joint Global Change Research Institute42, Food and Agriculture Organization43, Finnish Meteorological Institute44, Imperial College London45, Technical University of Crete46, University of Rochester47, Royal Netherlands Meteorological Institute48, Scripps Institution of Oceanography49, University of Toronto50, University of Maryland, College Park51, Hohai University52
15 Jul 2020-Earth System Science Data (Copernicus GmbH)-Vol. 12, Iss: 3, pp 1561-1623
TL;DR: The second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modeling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations) as discussed by the authors.
Abstract: Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Pierre Friedlingstein1, Pierre Friedlingstein2, Michael O'Sullivan2, Matthew W. Jones3, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters4, Wouter Peters5, Julia Pongratz6, Julia Pongratz7, Stephen Sitch1, Corinne Le Quéré3, Josep G. Canadell8, Philippe Ciais9, Robert B. Jackson10, Simone R. Alin11, Luiz E. O. C. Aragão12, Luiz E. O. C. Aragão1, Almut Arneth, Vivek K. Arora, Nicholas R. Bates13, Nicholas R. Bates14, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp15, Selma Bultan7, Naveen Chandra16, Naveen Chandra17, Frédéric Chevallier9, Louise Chini18, Wiley Evans, Liesbeth Florentie4, Piers M. Forster19, Thomas Gasser20, Marion Gehlen9, Dennis Gilfillan, Thanos Gkritzalis21, Luke Gregor22, Nicolas Gruber22, Ian Harris23, Kerstin Hartung7, Kerstin Hartung24, Vanessa Haverd8, Richard A. Houghton25, Tatiana Ilyina6, Atul K. Jain26, Emilie Joetzjer27, Koji Kadono28, Etsushi Kato, Vassilis Kitidis29, Jan Ivar Korsbakken, Peter Landschützer6, Nathalie Lefèvre30, Andrew Lenton31, Sebastian Lienert32, Zhu Liu33, Danica Lombardozzi34, Gregg Marland35, Nicolas Metzl30, David R. Munro11, David R. Munro36, Julia E. M. S. Nabel6, S. Nakaoka17, Yosuke Niwa17, Kevin D. O'Brien37, Kevin D. O'Brien11, Tsuneo Ono, Paul I. Palmer, Denis Pierrot38, Benjamin Poulter, Laure Resplandy39, Eddy Robertson40, Christian Rödenbeck6, Jörg Schwinger, Roland Séférian27, Ingunn Skjelvan, Adam J. P. Smith3, Adrienne J. Sutton11, Toste Tanhua41, Pieter P. Tans11, Hanqin Tian42, Bronte Tilbrook43, Bronte Tilbrook31, Guido R. van der Werf44, N. Vuichard9, Anthony P. Walker45, Rik Wanninkhof38, Andrew J. Watson1, David R. Willis23, Andy Wiltshire40, Wenping Yuan46, Xu Yue47, Sönke Zaehle6 
University of Exeter1, École Normale Supérieure2, Norwich Research Park3, Wageningen University and Research Centre4, University of Groningen5, Max Planck Society6, Ludwig Maximilian University of Munich7, Commonwealth Scientific and Industrial Research Organisation8, Université Paris-Saclay9, Stanford University10, National Oceanic and Atmospheric Administration11, National Institute for Space Research12, Bermuda Institute of Ocean Sciences13, University of Southampton14, PSL Research University15, Japan Agency for Marine-Earth Science and Technology16, National Institute for Environmental Studies17, University of Maryland, College Park18, University of Leeds19, International Institute of Minnesota20, Flanders Marine Institute21, ETH Zurich22, University of East Anglia23, German Aerospace Center24, Woods Hole Research Center25, University of Illinois at Urbana–Champaign26, University of Toulouse27, Japan Meteorological Agency28, Plymouth Marine Laboratory29, University of Paris30, Hobart Corporation31, Oeschger Centre for Climate Change Research32, Tsinghua University33, National Center for Atmospheric Research34, Appalachian State University35, University of Colorado Boulder36, University of Washington37, Atlantic Oceanographic and Meteorological Laboratory38, Princeton University39, Met Office40, Leibniz Institute of Marine Sciences41, Auburn University42, University of Tasmania43, VU University Amsterdam44, Oak Ridge National Laboratory45, Sun Yat-sen University46, Nanjing University47
TL;DR: In this paper, the authors describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).

1,764 citations


Cites background from "The global methane budget 2000–2017..."

  • ...…a steady state, an amount equal to this fossil CH4 emission is all converted to CO2 by OH oxidation and thus explains 0.083 GtC yr−1 of the global CO2 growth rate with an uncertainty range of 0.061 to 0.098 GtC yr−1 taken from the minimum and maximum of top-down estimates in Saunois et al. (2020)....

    [...]

  • ...The CH4 and CO emissions and sinks are published and analysed separately in the Global Methane Budget and Global Carbon Monoxide Budget publications, which follow a similar approach to that presented here (Saunois et al., 2020; Zheng et al., 2019)....

    [...]

  • ...If this minimum–maximum range is assumed to be 2σ because Saunois et al. (2020) did not account for the internal uncertainty of their min and max top-down estimates, it translates into a 1σ uncertainty of 0.019 GtC yr−1....

    [...]

  • ...Emissions of fossil CH4 represent 30 % of total anthropogenic CH4 emissions (Saunois et al., 2020; their top-down estimate is used because it is consistent with the observed CH4 growth rate), which is 0.083 GtC yr−1 for the decade 2008–2017....

    [...]

01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

948 citations

Journal ArticleDOI
University of Exeter1, Max Planck Institute for Biogeochemistry2, Tyndall Centre3, Atlantic Oceanographic and Meteorological Laboratory4, Bjerknes Centre for Climate Research5, University of Maryland, College Park6, CICERO Center for International Climate Research7, Leibniz Institute for Baltic Sea Research8, University of Reading9, Leibniz Institute of Marine Sciences10, Goddard Space Flight Center11, Flanders Marine Institute12, Food and Agriculture Organization13, Alfred Wegener Institute for Polar and Marine Research14, National Oceanic and Atmospheric Administration15, University of East Anglia16, Japan Meteorological Agency17, ETH Zurich18, National Institute for Environmental Studies19, Karlsruhe Institute of Technology20, Laboratoire des Sciences du Climat et de l'Environnement21, Tula Foundation22, Hertie Institute for Clinical Brain Research23, Nanjing University of Information Science and Technology24, Wageningen University and Research Centre25, Tsinghua University26, University of Western Sydney27, Cooperative Institute for Research in Environmental Sciences28, University of Florida29, Center for Neuroscience and Regenerative Medicine30, Woods Hole Research Center31, Michigan State University32, Tianjin University33, Auburn University34, Jilin Medical University35, Max Planck Institute for Meteorology36, Imperial College London37, Centre National de Recherches Météorologiques38, University of Groningen39, Tohoku University40, Ludwig Maximilian University of Munich41, Bank for International Settlements42, Institut Pierre-Simon Laplace43, Environment Canada44, North West Agriculture and Forestry University45, Northwest A&F University46, Pacific Marine Environmental Laboratory47, Stanford University48, Utrecht University49
TL;DR: Friedlingstein et al. as mentioned in this paper presented and synthesized datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including fossil CO2 emissions, land use and land-use change data and bookkeeping models.
Abstract: Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of 10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for 2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1, and SLAND was 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. The global atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOS relative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021).

343 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present estimates of greenhouse gas emissions trends by sector from 1990 to 2018, describing the major sources of emissions growth, stability and decline across ten global regions.
Abstract: Global greenhouse gas emissions can be traced to five economic sectors: energy, industry, buildings, transport and AFOLU (agriculture, forestry and other land uses). In this topical review we synthesize the literature to explain recent trends in global and regional emissions in each of these sectors. To contextualise our review, we present estimates of greenhouse gas emissions trends by sector from 1990 to 2018, describing the major sources of emissions growth, stability and decline across ten global regions. Both the literature and data emphasize limited progress towards reducing greenhouse gas emissions. The prominent global pattern is a continuation of underlying drivers with few signs of emerging limits to demand, nor of a deep shift towards the delivery of low and zero carbon services across sectors. We observe a moderate decarbonisation of energy systems in Europe and North America, driven by fuel switching and the increasing penetration of renewables. By contrast, in rapidly industrialising regions, fossil-based energy systems have continuously expanded, only very recently slowing down in their growth. Strong demand for materials, floor area, energy services and travel have driven emissions growth in the industry, buildings and transport sectors, particularly in Eastern Asia, Southern Asia and South-East Asia. An expansion of agriculture into carbon-dense tropical forest areas has driven recent increases in AFOLU emissions in Latin America, South-East Asia and Africa. Identifying, understanding, and tackling the most persistent and climate-damaging trends across sectors is a fundamental concern for research and policy as humanity treads deeper into the Anthropocene.

281 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a metadata analysis of methane fluxes from all major natural, impacted and human-made aquatic ecosystems and conclude that aquatic emissions will probably increase due to urbanization, eutrophication and positive climate feedbacks.
Abstract: Atmospheric methane is a potent greenhouse gas that plays a major role in controlling the Earth’s climate The causes of the renewed increase of methane concentration since 2007 are uncertain given the multiple sources and complex biogeochemistry Here, we present a metadata analysis of methane fluxes from all major natural, impacted and human-made aquatic ecosystems Our revised bottom-up global aquatic methane emissions combine diffusive, ebullitive and/or plant-mediated fluxes from 15 aquatic ecosystems We emphasize the high variability of methane fluxes within and between aquatic ecosystems and a positively skewed distribution of empirical data, making global estimates sensitive to statistical assumptions and sampling design We find aquatic ecosystems contribute (median) 41% or (mean) 53% of total global methane emissions from anthropogenic and natural sources We show that methane emissions increase from natural to impacted aquatic ecosystems and from coastal to freshwater ecosystems We argue that aquatic emissions will probably increase due to urbanization, eutrophication and positive climate feedbacks and suggest changes in land-use management as potential mitigation strategies to reduce aquatic methane emissions Methane emissions from aquatic systems contribute approximately half of global methane emissions, according to meta-analysis of natural, impacted and human-made aquatic ecosystems and indicating potential mitigation strategies to reduce emissions

239 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended ConcentrationPathways (ECPs), are presented.
Abstract: We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750-2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005-2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected 'best-estimate' global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example,

3,144 citations

Journal ArticleDOI
TL;DR: The datasets and algorithms used to create the Collection 5 MODIS Global Land Cover Type product, which is substantially changed relative to Collection 4, are described, with a four-fold increase in spatial resolution and changes in the input data and classification algorithm.

2,713 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications, and find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socioeconomic narrative, and (3) the stringency of the target.
Abstract: This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO 2 emissions of the baseline scenarios range from about 25 GtCO 2 to more than 120 GtCO 2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m 2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).

2,644 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step.
Abstract: . New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997–2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997–2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year−1 with significant interannual variability during 1997–2001 (2.8 Pg C year−1 in 1998 and 1.6 Pg C year−1 in 2001). Globally, emissions during 2002–2007 were relatively constant (around 2.1 Pg C year−1) before declining in 2008 (1.7 Pg C year−1) and 2009 (1.5 Pg C year−1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002–2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001–2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year−1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

2,494 citations

Journal ArticleDOI
15 Dec 2016-Nature
TL;DR: Using three million Landsat satellite images, this globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities.
Abstract: A freely available dataset produced from three million Landsat satellite images reveals substantial changes in the distribution of global surface water over the past 32 years and their causes, from climate change to human actions. The distribution of surface water has been mapped globally, and local-to-regional studies have tracked changes over time. But to date, there has been no global and methodologically consistent quantification of changes in surface water over time. Jean-Francois Pekel and colleagues have analysed more than three million Landsat images to quantify month-to-month changes in surface water at a resolution of 30 metres and over a 32-year period. They find that surface waters have declined by almost 90,000 square kilometres—largely in the Middle East and Central Asia—but that surface waters equivalent to about twice that area have been created elsewhere. Drought, reservoir creation and water extraction appear to have driven most of the changes in surface water over the past decades. The location and persistence of surface water (inland and coastal) is both affected by climate and human activity1 and affects climate2,3, biological diversity4 and human wellbeing5,6. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions7, statistical extrapolation of regional data8 and satellite imagery9,10,11,12, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images13, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change14 is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal15,16. Losses in Australia17 and the USA18 linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water-management decision-making.

2,469 citations

Related Papers (5)
Pierre Friedlingstein, Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Wouter Peters, Julia Pongratz, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Meike Becker, Laurent Bopp, Erik T. Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören B. Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George C. Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M Omar, Abdirahman M Omar, Tsuneo Ono, Anna Peregon, Anna Peregon, Denis Pierrot, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Jörg Schwinger, Naomi E. Smith, Naomi E. Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andy Wiltshire, Sönke Zaehle