scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Gravitational Wave Signature of Core-Collapse Supernovae

23 Feb 2009-Classical and Quantum Gravity (Institute of Physics)-Vol. 26, Iss: 6, pp 063001
TL;DR: In this paper, the ensemble of anticipated GW emission processes in stellar core collapse and postbounce core-collapse supernova evolution is reviewed and the authors present new results on the GW emission from post-bounce convective overturn and protoneutron star gmode pulsations based on axisymmetric radiation-hydrodynamic calculations.
Abstract: We review the ensemble of anticipated gravitational-wave (GW) emission processes in stellar core collapse and postbounce core-collapse supernova evolution. We discuss recent progress in the modeling of these processes and summarize most recent GW signal estimates. In addition, we present new results on the GW emission from postbounce convective overturn and protoneutron star g-mode pulsations based on axisymmetric radiation-hydrodynamic calculations. Galactic core-collapse supernovae are very rare events, but within 3–5 Mpc from Earth, the rate jumps to 1 in ~2 years. Using the set of currently available theoretical gravitational waveforms, we compute upper-limit optimal signal-to-noise ratios based on current and advanced LIGO/GEO600/VIRGO noise curves for the recent SN 2008bk which exploded at ~3.9 Mpc. While initial LIGOs cannot detect GWs emitted by core-collapse events at such a distance, we find that advanced LIGO-class detectors could put significant upper limits on the GW emission strength for such events. We study the potential occurrence of the various GW emission processes in particular supernova explosion scenarios and argue that the GW signatures of neutrino-driven, magneto-rotational, and acoustically-driven core-collapse SNe may be mutually exclusive. We suggest that even initial LIGOs could distinguish these explosion mechanisms based on the detection (or non-detection) of GWs from a galactic core-collapse supernova.
Citations
More filters
Journal ArticleDOI
TL;DR: Quasinormal modes are eigenmodes of dissipative systems as discussed by the authors, and they serve as an important tool for determining the near-equilibrium properties of strongly coupled quantum field theories, such as viscosity, conductivity and diffusion constants.
Abstract: Quasinormal modes are eigenmodes of dissipative systems. Perturbations of classical gravitational backgrounds involving black holes or branes naturally lead to quasinormal modes. The analysis and classification of the quasinormal spectra require solving non-Hermitian eigenvalue problems for the associated linear differential equations. Within the recently developed gauge-gravity duality, these modes serve as an important tool for determining the near-equilibrium properties of strongly coupled quantum field theories, in particular their transport coefficients, such as viscosity, conductivity and diffusion constants. In astrophysics, the detection of quasinormal modes in gravitational wave experiments would allow precise measurements of the mass and spin of black holes as well as new tests of general relativity. This review is meant as an introduction to the subject, with a focus on the recent developments in the field.

1,592 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent achievements on various aspects of black hole perturbations are discussed such as decoupling of variables in the perturbation equations, quasinormal modes (with special emphasis on various numerical and analytical methods of calculations), late-time tails, gravitational stability, anti-de Sitter/conformal field theory interpretation, and holographic superconductors.
Abstract: Perturbations of black holes, initially considered in the context of possible observations of astrophysical effects, have been studied for the past 10 years in string theory, brane-world models, and quantum gravity. Through the famous gauge/gravity duality, proper oscillations of perturbed black holes, called quasinormal modes, allow for the description of the hydrodynamic regime in the dual finite temperature field theory at strong coupling, which can be used to predict the behavior of quark-gluon plasmas in the nonperturbative regime. On the other hand, the brane-world scenarios assume the existence of extra dimensions in nature, so that multidimensional black holes can be formed in a laboratory experiment. All this stimulated active research in the field of perturbations of higher-dimensional black holes and branes during recent years. In this review recent achievements on various aspects of black hole perturbations are discussed such as decoupling of variables in the perturbation equations, quasinormal modes (with special emphasis on various numerical and analytical methods of calculations), late-time tails, gravitational stability, anti--de Sitter/conformal field theory interpretation of quasinormal modes, and holographic superconductors. We also touch on state-of-the-art observational possibilities for detecting quasinormal modes of black holes.

1,070 citations

Journal ArticleDOI
TL;DR: The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors as mentioned in this paper.
Abstract: Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors. The characteristics of the neutrino emission from newborn neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from...

971 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations

Journal ArticleDOI
TL;DR: In this paper, the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes are discussed, and plots that consistently compare different detectors are presented.
Abstract: There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.

582 citations

References
More filters
MonographDOI
27 Jul 1983
TL;DR: In this paper, the soft file of a book collection of black holes white dwarfs and neutron stars can be downloaded and the book can be found on-line in this site.
Abstract: Only for you today! Discover your favourite black holes white dwarfs and neutron stars book right here by downloading and getting the soft file of the book. This is not your time to traditionally go to the book stores to buy a book. Here, varieties of book collections are available to download. One of them is this black holes white dwarfs and neutron stars as your preferred book. Getting this book b on-line in this site can be realized now by visiting the link page to download. It will be easy. Why should be here?

4,305 citations

Journal ArticleDOI
TL;DR: In this article, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field.
Abstract: A broad class of astronomical accretion disks is presently shown to be dynamically unstable to axisymmetric disturbances in the presence of a weak magnetic field, an insight with consequently broad applicability to gaseous, differentially-rotating systems. In the first part of this work, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate, which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field. Fluid motions associated with the instability directly generate both poloidal and toroidal field components. In the second part of this investigation, the scaling relation between the instability's wavenumber and the Alfven velocity is demonstrated, and the independence of the maximum growth rate from magnetic field strength is confirmed.

4,265 citations

Journal ArticleDOI
TL;DR: In this paper, the nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metals Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities).
Abstract: The nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metallicities Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities). Altogether 78 different model supernova explosions are calculated. In each case nucleosynthesis has already been determined for 200 isotopes in each of 600 to 1200 zones of the presupernova star, including the effects of time dependent convection. Here each star is exploded using a piston to give a specified final kinetic energy at infinity (typically 1.2 {times} 10{sup 51} erg), and the explosive modifications to the nucleosynthesis, including the effects of neutrino irradiation, determined. A single value of the critical {sup 12}C({sub {alpha},{gamma}}){sup 16}O reaction rate corresponding to S(300 keV) = 170 keV barns is used in all calculations. The synthesis of each isotope is discussed along with its sensitivity to model parameters. In each case, the final mass of the collapsed remnant is also determined and often found not to correspond to the location of the pistonmore » (typically the edge of the iron core), but to a ``mass cut`` farther out. This mass cut is sensitive not only to the explosion energy, but also to the presupernova structure, stellar mass, and the metallicity. Unless the explosion mechanism, for unknown reasons, provides a much larger characteristic energy in more massive stars, it appears likely that stars larger than about 30 M{sub {center_dot}} will experience considerable reimplosion of heavy elements following the initial launch of a successful shock. While such explosions will produce a viable, bright Type II supernova light curve, lacking the radioactive tail, they will have dramatically reduced yields of heavy elements and may leave black hole remnants of up to 10 and more solar masses.« less

3,649 citations

Journal ArticleDOI
TL;DR: In this paper, a cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole.
Abstract: A cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole. The black hole may be a consequence of neutron star merger or neutron star-black hole merger, but for long complex bursts, it is more likely to come from the collapse of a single Wolf-Rayet star endowed with rotation ('failed' Type Ib supernova). The disk is geometrically thick and typically has a mass inside 100 km of several tenths of a solar mass. In the failed supernova case, the disk is fed for a longer period of time by the collapsing star. At its inner edge the disk is thick to its own neutrino emission and evolves on a viscous time scale of several seconds. In a region roughly 30 km across, interior to the accretion disk and along its axis of rotation, a pair fireball is generated by neutrino annihilation and electron-neutrino scattering which deposit approximately 10 exp 50 ergs/s.

2,399 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss how metallicity affects the evolution and final fate of massive stars, and derive the relative populations of stellar populations as a function of metallity.
Abstract: How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

2,007 citations