scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The gut microbiome as therapeutic target

01 May 2011-Pharmacology & Therapeutics (Pharmacol Ther)-Vol. 130, Iss: 2, pp 202-212
TL;DR: Novel findings are discussed that may partly explain how the microbial community participates in the development of the fat mass development, insulin resistance and low-grade inflammation that characterise obesity.
About: This article is published in Pharmacology & Therapeutics.The article was published on 2011-05-01. It has received 318 citations till now. The article focuses on the topics: Dysbiosis & Gut flora.
Citations
More filters
Journal ArticleDOI
TL;DR: The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.
Abstract: Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non...

1,482 citations

Journal ArticleDOI
TL;DR: In this article, the role of the Gut Microbiota in the development of metabolic endotoxemia is discussed, as well as its role in specific dietary treatments (prebiotics and probiotics) and surgical interventions.
Abstract: Obesity is associated with metabolic alterations related to glucose homeostasis and cardiovascular risk factors. These metabolic alterations are associated with low-grade inflammation that contributes to the onset of these diseases. We and others have provided evidence that gut microbiota participates in whole-body metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders. Recently, we defined gut microbiota-derived lipopolysaccharide (LPS) (and metabolic endotoxemia) as a factor involved in the onset and progression of inflammation and metabolic diseases. In this review, we discuss mechanisms involved in the development of metabolic endotoxemia such as the gut permeability. We also discuss our latest discoveries demonstrating a link between the gut microbiota, endocannabinoid system tone, leptin resistance, gut peptides (glucagon-like peptide-1 and -2), and metabolic features. Finally, we will introduce the role of the gut microbiota in specific dietary treatments (prebiotics and probiotics) and surgical interventions (gastric bypass).

674 citations


Cites background from "The gut microbiome as therapeutic t..."

  • ...We have previously shown that prebiotics improve gut barrier function and reduce the metabolic inflammation and insulin resistance associated with obesity by increasing release of gut peptides, such as glucagon-like peptide-1 and -2 (GLP-1 and -2).(10,18,20-22,26,73,74) We found that prebiotic-induced changes in the gut microbiota promote GLP-1 and GLP-2 synthesis (proglucagon mRNA, GLP-1 and GLP-2 peptides) in the proximal colon (Fig....

    [...]

  • ...The human microbiota consists of as many as 10 to 100 trillion microorganisms, a number that is at least 10-fold more than cells that make up the human body,(17) meaning that the cells that compose our body are 10% human and 90% microbes.(18) Therefore, it is now widely accepted that this consortium of cells provides important metabolic and biological functions that cannot be performed by our human metabolism....

    [...]

  • ...As mentioned already, the gut microbiota can be considered as an “exteriorized organ” that contributes to host metabolism and homeostasis via different functions and mechanisms.(18) Growing evidence suggests that the gut microbiota contributes to host metabolism through communication with adipose tissue, which influences the development of metabolic alterations associated with obesity....

    [...]

Journal ArticleDOI
TL;DR: The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.
Abstract: The gastrointestinal (GI) microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

569 citations


Cites background from "The gut microbiome as therapeutic t..."

  • ...Probiotic and prebiotic treatments may be an approach to reversing host metabolic alterations associated with dysbiosis observed in obesity [88]....

    [...]

Journal ArticleDOI
TL;DR: The current knowledge about high-fat diets and subclinical inflammation is discussed and the new evidence that correlates gut microbiota, intestinal permeability and alkaline phosphatase activity with increased blood LPS levels and the biological effects of this increase, such as insulin resistance are described.
Abstract: Lipopolysaccharide (LPS) may play an important role in chronic diseases through the activation of inflammatory responses. The type of diet consumed is of major concern for the prevention and treatment of these diseases. Evidence from animal and human studies has shown that LPS can diffuse from the gut to the circulatory system in response to the intake of high amounts of fat. The method by which LPS move into the circulatory system is either through direct diffusion due to intestinal paracellular permeability or through absorption by enterocytes during chylomicron secretion. Considering the impact of metabolic diseases on public health and the association between these diseases and the levels of LPS in the circulatory system, this review will mainly discuss the current knowledge about high-fat diets and subclinical inflammation. It will also describe the new evidence that correlates gut microbiota, intestinal permeability and alkaline phosphatase activity with increased blood LPS levels and the biological effects of this increase, such as insulin resistance. Although the majority of the studies published so far have assessed the effects of dietary fat, additional studies are necessary to deepen the understanding of how the amount, the quality and the structure of the fat may affect endotoxaemia. The potential of food combinations to reduce the negative effects of fat intake should also be considered in future studies. In these studies, the effects of flavonoids, prebiotics and probiotics on endotoxaemia should be investigated. Thus, it is essential to identify dietetic strategies capable of minimising endotoxaemia and its postprandial inflammatory effects.

494 citations


Cites background from "The gut microbiome as therapeutic t..."

  • ...(MyD88), into lipid rafts of the membrane, leading to the activation of downstream signalling pathways, such as NF-kB and mitogen-activated protein kinase (MAPK), which can lead to inflammation((38,67,68))....

    [...]

Journal ArticleDOI
TL;DR: The evidence for infiltration of adipose tissue by cells of the adaptive immune system, how adaptive system cells affect innate cell populations and the influence of adaptive immune cells on the development of insulin resistance are summarized.
Abstract: Obesity is the hallmark of the metabolic syndrome and predisposes patients to the development of major chronic metabolic diseases including type 2 diabetes mellitus. Adipose tissue expansion in obesity is characterized by increasing infiltration of proinflammatory immune cells into adipose tissue causing chronic, low-grade inflammation. Phenotypic switching of macrophages is an important mechanism of adipose tissue inflammation, and there is involvement of cells from the adaptive immune system in this process. T-cell phenotype changes and recruitment of B cells and T cells precedes macrophage infiltration. Cytokines and chemokines produced by immune cells influence localized and systemic inflammation, which is a pathogenic link between obesity and insulin resistance. Antigens absorbed from the gut might contribute to T-cell activation and recruitment into visceral adipose tissue in obesity. This Review summarizes, in the context of obesity, the evidence for infiltration of adipose tissue by cells of the adaptive immune system, how adaptive system cells affect innate cell populations and the influence of adaptive immune cells on the development of insulin resistance.

420 citations

References
More filters
Journal ArticleDOI
21 Dec 2006-Nature
TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Abstract: The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.

10,126 citations

Journal ArticleDOI
04 Mar 2010-Nature
TL;DR: The Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals are described, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species.
Abstract: To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively

9,268 citations

Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
21 Dec 2006-Nature
TL;DR: It is shown that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet.
Abstract: Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.

7,550 citations

Related Papers (5)