scispace - formally typeset

Journal ArticleDOI

The Hallmarks of Aging

06 Jun 2013-Cell (Cell)-Vol. 153, Iss: 6, pp 1194-1217

TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.
Abstract: Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Topics: Physiological Aging (63%), Geroscience (60%), Biomarkers of aging (54%), Proteostasis (52%)
Citations
More filters

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

1,949 citations


Journal ArticleDOI
TL;DR: The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens, and the disruption of the relationship between autphagy and apoptosis has important pathophysiological consequences.
Abstract: Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.

1,443 citations


Journal ArticleDOI
Jan M. van Deursen1Institutions (1)
22 May 2014-Nature
TL;DR: A deeper understanding of the molecular mechanisms underlying the multi-step progression of senescence and the development and function of acute versus chronic senescent cells may lead to new therapeutic strategies for age-related pathologies and extend healthy lifespan.
Abstract: Cellular senescence has historically been viewed as an irreversible cell-cycle arrest mechanism that acts to protect against cancer, but recent discoveries have extended its known role to complex biological processes such as development, tissue repair, ageing and age-related disorders. New insights indicate that, unlike a static endpoint, senescence represents a series of progressive and phenotypically diverse cellular states acquired after the initial growth arrest. A deeper understanding of the molecular mechanisms underlying the multi-step progression of senescence and the development and function of acute versus chronic senescent cells may lead to new therapeutic strategies for age-related pathologies and extend healthy lifespan.

1,342 citations


Journal ArticleDOI
TL;DR: In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively, and antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.
Abstract: Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events - senescence, followed by clearance and then regeneration - may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.

1,339 citations


Journal ArticleDOI
TL;DR: In this review, emerging concepts in tissue regeneration and repair are highlighted, and some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies are provided.
Abstract: The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body’s natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies.

1,270 citations


References
More filters

Journal ArticleDOI
Douglas Hanahan1, Robert A. Weinberg2Institutions (2)
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
Abstract: The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

42,275 citations


"The Hallmarks of Aging" refers background in this paper

  • ...The cancer field gained major momentum in 2000, with the publication of a landmark paper that enumerated six hallmarks of cancer (Hanahan and Weinberg, 2000), recently expanded to ten (Hanahan and Weinberg, 2011)....

    [...]


Journal ArticleDOI
Douglas Hanahan1, Robert A. Weinberg2Institutions (2)
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.
Abstract: We wish to thank Terry Schoop of Biomed Arts Associates, San Francisco, for preparation of the figures, Cori Bargmann and Zena Werb for insightful comments on the manuscript, and Normita Santore for editorial assistance. In addition, we are indebted to Joe Harford and Richard Klausner, who allowed us to adapt and expand their depiction of the cell signaling network, and we appreciate suggestions on signaling pathways from Randy Watnick, Brian Elenbas, Bill Lundberg, Dave Morgan, and Henry Bourne. R. A. W. is a Ludwig Foundation and American Cancer Society Professor of Biology. His work has been supported by the Department of the Army and the National Institutes of Health. D. H. acknowledges the support and encouragement of the National Cancer Institute. Editorial policy has rendered the citations illustrative but not comprehensive.

26,950 citations


"The Hallmarks of Aging" refers background in this paper

  • ...The cancer field gained major momentum in 2000, with the publication of a landmark paper that enumerated six hallmarks of cancer (Hanahan and Weinberg, 2000), recently expanded to ten (Hanahan and Weinberg, 2011)....

    [...]


Journal ArticleDOI
Leonard Hayflick1, P.S. Moorhead1Institutions (1)
TL;DR: A consideration of the cause of the eventual degeneration of these strains leads to the hypothesis that non-cumulative external factors are excluded and that the phenomenon is attributable to intrinsic factors which are expressed as senescence at the cellular level.
Abstract: The isolation and characterization of 25 strains of human diploid fibroblasts derived from fetuses are described. Routine tissue culture techniques were employed. Other than maintenance of the diploid karyotype, ten other criteria serve to distinguish these strains from heteroploid cell lines. These include retention of sex chromatin, histotypical differentiation, inadaptability to suspended culture, non-malignant characteristics in vivo , finite limit of cultivation, similar virus spectrum to primary tissue, similar cell morphology to primary tissue, increased acid production compared to cell lines, retention of Coxsackie A9 receptor substance, and ease with which strains can be developed. Survival of cell strains at − 70 °C with retention of all characteristics insures an almost unlimited supply of any strain regardless of the fact that they degenerate after about 50 subcultivations and one year in culture. A consideration of the cause of the eventual degeneration of these strains leads to the hypothesis that non-cumulative external factors are excluded and that the phenomenon is attributable to intrinsic factors which are expressed as senescence at the cellular level. With these characteristics and their extremely broad virus spectrum, the use of diploid human cell strains for human virus vaccine production is suggested. In view of these observations a number of terms used by cell culturists are redefined.

6,737 citations


"The Hallmarks of Aging" refers background in this paper

  • ...This phenomenon was originally described by Hayflick in human fibroblasts serially passaged in culture (Hayflick and Moorhead, 1961)....

    [...]

  • ...Telomere exhaustion explains the limited proliferative capacity of some types of in-vitro-cultured cells, the so-called replicative senescence, or Hayflick limit (Hayflick and Moorhead, 1961; Olovnikov, 1996)....

    [...]


Journal ArticleDOI
Goberdhan P. Dimri1, X Lee, G Basile, Meileen Acosta  +6 moreInstitutions (1)
TL;DR: It is shown that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture, which provides in situ evidence that senescent cells may exist and accumulate with age in vivo.
Abstract: Normal somatic cells invariably enter a state of irreversibly arrested growth and altered function after a finite number of divisions. This process, termed replicative senescence, is thought to be a tumor-suppressive mechanism and an underlying cause of aging. There is ample evidence that escape from senescence, or immortality, is important for malignant transformation. By contrast, the role of replicative senescence in organismic aging is controversial. Studies on cells cultured from donors of different ages, genetic backgrounds, or species suggest that senescence occurs in vivo and that organismic lifespan and cell replicative lifespan are under common genetic control. However, senescent cells cannot be distinguished from quiescent or terminally differentiated cells in tissues. Thus, evidence that senescent cells exist and accumulate with age in vivo is lacking. We show that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture. This marker was expressed by senescent, but not presenescent, fibroblasts and keratinocytes but was absent from quiescent fibroblasts and terminally differentiated keratinocytes. It was also absent from immortal cells but was induced by genetic manipulations that reversed immortality. In skin samples from human donors of different age, there was an age-dependent increase in this marker in dermal fibroblasts and epidermal keratinocytes. This marker provides in situ evidence that senescent cells may exist and accumulate with age in vivo.

6,215 citations


"The Hallmarks of Aging" refers background in this paper

  • ...Some studies have directly used senescence-associated b-galactosidase (SABG) to identify senescence in tissues (Dimri et al., 1995)....

    [...]


Journal ArticleDOI
Mathieu Laplante1, David M. Sabatini1Institutions (1)
13 Apr 2012-Cell
TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.
Abstract: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.

5,792 citations


"The Hallmarks of Aging" refers background in this paper

  • ...Altered Intercellular Communication Beyond cell-autonomous alterations, aging also involves changes at the level of intercellular communication, be it endocrine, neuroendocrine, or neuronal (Laplante and Sabatini, 2012; Rando and Chang, 2012; Russell and Kahn, 2007; Zhang et al., 2013) (Figure 5C)....

    [...]

  • ...The mTOR kinase is part of two multiprotein complexes, mTORC1 and mTORC2, that regulate essentially all aspects of anabolic metabolism (Laplante and Sabatini, 2012)....

    [...]


Network Information
Related Papers (5)
Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202221
20211,517
20201,390
20191,070
2018897
2017775