scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The “Heatline” Visualization of Convective Heat Transfer

01 Nov 1983-Journal of Heat Transfer-transactions of The Asme (American Society of Mechanical Engineers)-Vol. 105, Iss: 4, pp 916-919
TL;DR: Proposition d'une nouvelle methode de visualisation du transfert de chaleur dans un ecoulement de fluide. Application a la convection naturelle dans une enceinte carree chauffee lateralement
Abstract: Proposition d'une nouvelle methode de visualisation du transfert de chaleur dans un ecoulement de fluide. Application a la convection naturelle dans une enceinte carree chauffee lateralement
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of Hartmann number, buoyancy ratio number, and Lewis number on convection heat transfer in an enclosure filled with nanofluid is investigated, where the Navier Stokes equations in their vorticity-stream function form are used to simulate the flow pattern, isotherms and concentration.
Abstract: In this study MHD effect on natural convection heat transfer in an enclosure filled with nanofluid is investigated. The transport equations used in the analysis took into account the effect of Brownian motion and thermophoresis parameters. The Navier Stokes equations in their vorticity-stream function form are used to simulate the flow pattern, isotherms and concentration. The governing equations are solved via Control Volume based Finite Element Method. The inner and outer circular walls are maintained at constant temperatures while two other walls are thermally insulated. The heat transfer between cold and hot regions of the enclosure cannot be well understood by using isotherm patterns so heatline visualization technique is used to find the direction and intensity of heat transfer in a domain. Effect of Hartmann number (Ha = 0, 30, 60 and 100), buoyancy ratio number (Nr = 0.1–4) and Lewis number (Le = 2, 4, 6 and 8) on streamline, isotherm, isoconcentration and heatline are examined. Also a correlation for Nusselt number corresponding to active parameters is presented. The results indicate that Nusselt number is an increasing function of buoyancy ratio number but it is a decreasing function of Lewis number and Hartmann number. Also it can be concluded that as buoyancy ratio number increases the effects of other active parameters are more pronounced.

213 citations

Journal ArticleDOI
TL;DR: In this article, the Galerkin finite element method has been employed to solve momentum and energy balance as well as post processing streamfunctions and heatfunctions in the presence of hot and cold side walls.
Abstract: Natural convection of nanofluids in presence of hot and cold side walls (case 1) or uniform or non-uniform heating of bottom wall with cold side walls (case 2) have been investigated based on visualization of heat flow via heatfunctions or heatlines. Galerkin finite element method has been employed to solve momentum and energy balance as well as post processing streamfunctions and heatfunctions. Various nanofluids are considered as Copper–Water, TiO2–Water and Alumina–Water. Enhancement of heat transfer with respect to base fluid (water) has been observed for all ranges of Rayleigh number (Ra). Dominance of viscous force or buoyancy force are found to play significant roles to characterize the heat transfer rates and temperature patterns which are also established based on heatlines. In general, convective closed loop heatlines are present even at low Rayleigh number (Ra=103) within base fluid, but all nanofluids exhibit dominant conductive heat transport as the flow is also found to be weak due to dominance of viscous force for case 1. On the other hand, convective heat transport at the core of a circulation cell, typically represented by closed loop heatlines, is more intense for nanofluids compared to base fluid (water) for case 2 at Ra = 105. It is also found that heatlines with larger heatfunctions values for nanofluids coincide with heatlines with smaller heatfunction values for water at walls. Consequently, Nusselt number which is also correlated with heatfunctions show larger values of nanofluids for all ranges of Ra. Average Nusselt numbers show that larger enhancement of heat transfer rates for all nanofluids at Ra=105 and Alumina–Water and Copper–Water exhibit larger enhancement of heat transfer rates.

172 citations


Cites background from "The “Heatline” Visualization of Con..."

  • ...It is observed that the sign of heatfunction is positive (as also assumed in the earlier work [37]) near the top wall and the sign is negative in the core where the heatfunctions denote strong convective heat transfer for case 1....

    [...]

  • ...Heatline concept was developed by earlier researchers [37,38] to visualize conductive as well as convective heat transport....

    [...]

  • ...A detailed explanation for this situation may be found in earlier articles [37,48]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effect of MHD on heat transfer in an inclined L-shape enclosure filled with nanofluid is studied using the control volume based finite element method (CVFEM).
Abstract: In this paper, MHD effect on natural convection heat transfer in an inclined L-shape enclosure filled with nanofluid is studied. The numerical investigation is carried out using the control volume based finite element method (CVFEM). The fluid in the enclosure is a water-based nanofluid containing Al2O3 nanoparticle. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo–Kleinstreuer–Li) correlation in which effect of Brownian motion on the effective thermal conductivity is considered. The heat transfer between cold and hot regions of the enclosure cannot be well understood by using isotherm patterns so heatline visualization technique is used to find the direction and intensity of heat transfer in a domain. Effect of Hartmann number, volume fraction of nanoparticle, Rayleigh number and inclination angle on streamline, isotherm and heatline are examined. The results show that Nusselt number increases with increase of Rayleigh number and volume fraction of nanoparticle while it decreases with augment of Hartmann number and inclination angle. Enhancement in heat transfer has reverse relationship with Hartmann number and Rayleigh number.

169 citations

Journal ArticleDOI
TL;DR: In this article, the control volume based finite element method is applied to solve the problem of natural convection heat transfer in an enclosure filled with nanofluid, and the important effect of Brownian motion and thermophoresis has been included in the model of nanofluid.
Abstract: In this study Control Volume based Finite Element Method is applied to solve the problem of natural convection heat transfer in an enclosure filled with nanofluid. The important effect of Brownian motion and thermophoresis has been included in the model of nanofluid. The inner sinusoidal and outer circular walls are maintained at constant temperatures while the two other walls are thermally insulated. The heat transfer between cold and hot regions of the enclosure cannot be well understood by using isotherm patterns so heatline visualization technique is used to find the direction and intensity of heat transfer in a domain. Effects of thermal Rayleigh number (Ra), buoyancy ratio number (Nr) and Lewis number (Le) on streamline, isotherm, isoconcentration and heatline are examined. The results indicate that the average Nusselt number decreases as buoyancy ratio number increases until it reaches a minimum value and then starts increasing. As Lewis number increases, this minimum value occurs at higher buoyancy ratio number.

169 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the studies on natural convection heat transfer in triangular, trapezoidal, parallelogrammic enclosures and enclosures with curved and wavy walls filled with fluid or porous media is presented.
Abstract: Natural convection in an enclosure (internal convection) is an important problem due to its significant practical applications. In energy related applications, natural convection plays a dominant role in transport of energy for the proper design of enclosures in order to achieve higher heat transfer rates. This review summarizes the studies on natural convection heat transfer in triangular, trapezoidal, parallelogrammic enclosures and enclosures with curved and wavy walls filled with fluid or porous media. In addition, this review also summarizes the natural convection studies in the nanofluid filled enclosures. Studies have been performed for the enclosures subjected to different thermal boundary conditions. A number of the studies demonstrated that the variation of the aspect ratio and base angle of the triangular and rhombic/parallelogrammic enclosures had a wide influence on the flow distribution pattern. In the trapezoidal enclosure, the aspect ratio of the cavity as well as the presence of the baffles along the walls played a significant role in the temperature and flow distribution. The flow patterns within the complex enclosures were found to be largely dependent on the amplitude-wavelength ratio and number of undulations of the wavy walls. In addition, the researchers have also studied the effect of the various parameters such as the Rayleigh numbers, Prandtl numbers, Darcy numbers, Darcy–Rayleigh number, irreversibility distribution ratios, volume fraction of the nanoparticles, etc. Overall, the current review paper presents an useful insight into the potential strategies for enhancing the convection heat transfer performance.

168 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the complex nature of the natural convection phenomena in enclosures is discussed and the boundary value problem is formulated, assuming that the motion is 2D and steady, the fluid is incompressible and frictional heating is negligible, and the difference between the hot wall and cold wall temperatures is small relative to the absolute temperatures of the cold wall.
Abstract: Publisher Summary This chapter discusses the complex nature of the natural convection phenomena in enclosures It discusses the two basic configurations of natural convection— that is, a rectangular cavity and a horizontal circular cylinder In rectangular cavities, consideration is given to the two-dimensional convective motion generated by the buoyancy force on the fluid in a rectangle and to the associated heat transfer The two long sides are vertical boundaries held at different temperatures and the short sides can either be heat conducting or insulated Particular attention is given to the different flow regimes that can occur and the heat transfer across the fluid space between the two plane parallel vertical boundaries Although heat transfer by radiation may not be negligible it is independent of the other types of heat transfer and can be fairly accurately calculated separately To formulate the boundary value problem that describes this phenomena it is assumed that: (a) the motion is two-dimensional and steady, (b) the fluid is incompressible and frictional heating is negligible, and (c) the difference between the hot wall and cold wall temperatures is small relative to the absolute temperatures of the cold wall In horizontal circular cylinder, consideration is given to the large Rayleigh number flow with the Prandtl number large and the Grashof number of unit order of the magnitude

973 citations

Book ChapterDOI
Ping Cheng1
TL;DR: In this paper, the authors discuss the mathematical formulation of convective heat transfer in geothermal systems and the prediction of reservoir behavior under production can be obtained by idealizing it as a saturated porous medium.
Abstract: Publisher Summary This chapter discusses the mathematical formulation of the problems of convective heat transfer in geothermal systems. Geothermal reservoirs may have numerous near-vertical faults and relatively impermeable intrusive interspersed in the aquifers. Both theoretical and experimental investigations of heat transfer in geothermal systems are reviewed. A qualitative understanding of the large-scale convection processes in a geothermal reservoir and the prediction of reservoir behavior under production can be obtained by idealizing it as a saturated porous medium. The identification of a viable geothermal reservoir and the estimation of its capacity remain major problems in the utilization of geothermal resources. Thermal anomalies in geothermal areas can be detected by surface manifestations, aerial infrared surveys, geochemical analyses, or exploratory drillings. Many of the analyses are applicable to a wide range of engineering problems whenever they can be idealized as convection in a porous medium. These include the problems of the secondary recovery of oil by thermal methods, the use of fibrous materials for thermal insulations, the design of aquifers as an energy storage system, and the deposition of mineral ore in the subsurface formation. Results from short-duration well testing are used to determine reservoir characteristics.

681 citations

Journal ArticleDOI
TL;DR: Torrance, Orloff & Rockett as discussed by the authors made an analytical study of the natural convection induced in an enclosure by a small hot spot centrally located on the floor, and solved the equations of fluid flow in axisymmetric cylindrical coordinates with the Boussinesq approximation.
Abstract: An analytical study was made of the natural convection induced in an enclosure by a small hot spot centrally located on the floor. The enclosure was a circular cylinder, vertically oriented, with height equal to radius. A Prandtl number of 0.7 (air) was assumed; the Grashof number (Gr) was based on cylinder height and hot spot temperature. The equations of fluid flow in axisymmetric cylindrical co-ordinates were simplified with the Boussinesq approximation. The equations were solved numerically with a computationally stable, explicit method. The computation, starting from quiescent conditions, proceeded through the initial transient to the fully developed flow. Solutions were obtained for Gr from 4 × 104 to 4 × 1010. The theoretical flows are in excellent agreement with experimentally observed laminar flows (Gr [lsim ] 1.2 × 109) which are discussed in a companion paper, Torrance, Orloff & Rockett (1969). Turbulence was observed experimentally for Gr [gsim ] 1.2 × 109. When the theoretical calculations were extended to Gr = 4 × 1010, a periodic vortex shedding developed, suggestive of the onset of laminar instability. The theoretical results reveal a √Gr scaling for the initial flow transients and, at large Gr, the velocities and heat transfer rates.

146 citations

Journal ArticleDOI
TL;DR: In this article, a comparative study of four differencing schemes for some elliptic-type equations involving fluid flow and heat transfer is presented, and the differenced schemes under consideration are discussed.
Abstract: The work presented here is a comparative study of four differencing schemes for some elliptic-type equations involving fluid flow and heat transfer. The differencing schemes under consideration are...

23 citations