scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The hydrogen bond in the solid state.

04 Jan 2002-Angewandte Chemie (ANGEWANTE CHEMIE. (INTERNATIONAL EDITION IN ENGLISH)-Vol. 41, Iss: 1, pp 48-76
TL;DR: The hydrogen bond is the most important of all directional intermolecular interactions, operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological.
Abstract: The hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological. Research into hydrogen bonds experienced a stagnant period in the 1980s, but re-opened around 1990, and has been in rapid development since then. In terms of modern concepts, the hydrogen bond is understood as a very broad phenomenon, and it is accepted that there are open borders to other effects. There are dozens of different types of X-H.A hydrogen bonds that occur commonly in the condensed phases, and in addition there are innumerable less common ones. Dissociation energies span more than two orders of magnitude (about 0.2-40 kcal mol(-1)). Within this range, the nature of the interaction is not constant, but its electrostatic, covalent, and dispersion contributions vary in their relative weights. The hydrogen bond has broad transition regions that merge continuously with the covalent bond, the van der Waals interaction, the ionic interaction, and also the cation-pi interaction. All hydrogen bonds can be considered as incipient proton transfer reactions, and for strong hydrogen bonds, this reaction can be in a very advanced state. In this review, a coherent survey is given on all these matters.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a two-dimensional mapping of the Hirshfeld surfaces of a molecular molecule is presented, which summarizes quantitatively the nature and type of intermolecular interaction experienced by a molecule in the bulk, and presents it in a convenient graphical format.
Abstract: We have recently described a remarkable new way of exploring packing modes and intermolecular interactions in molecular crystals using a novel partitioning of crystal space. These molecular Hirshfeld surfaces reflect intermolecular interactions in a novel visual manner, offering a hitherto unseen picture of molecular shape in a crystalline environment. The surfaces encode information about all intermolecular interactions simultaneously, but sophisticated interactive graphics are required in order to extract the information most efficiently. To overcome this we have devised a two-dimensional mapping which summarizes quantitatively the nature and type of intermolecular interaction experienced by a molecule in the bulk, and presents it in a convenient graphical format. The mapping takes advantage of the triangulation of the Hirshfeld surfaces, and plots the fraction of points on the surface as a function of the closest distances from the point to nuclei inside and outside the surface. In this manner all interaction types (for example, hydrogen bonding, close and distant van der Waals contacts, C–H⋯π interactions, π–π stacking) are readily identifiable, and it becomes a straightforward matter to classify molecular crystals by the nature of interactions, and to rapidly identify similarities and differences which can become obscured when examining crystal packing diagrams. These plots are a novel visual representation of all the intermolecular interactions simultaneously, and are unique for a given crystal structure and polymorph. Applications to a wide variety of molecular crystals and intermolecular interactions are presented, including polymorphic systems, as well as crystals where Z′ > 1.

2,646 citations

Journal ArticleDOI
TL;DR: Proton-coupled electron transfer is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues and several are reviewed.
Abstract: ▪ Abstract Proton-coupled electron transfer (PCET) is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues. We review several are...

2,182 citations

Journal ArticleDOI
TL;DR: A new way of exploring packing modes and intermolecular interactions in molecular crystals is described, using Hirshfeld surfaces to partition crystal space, using identifiable patterns of interaction between small molecules to rationalize the often complex mix of interactions displayed by large molecules.
Abstract: A new way of exploring packing modes and intermolecular interactions in molecular crystals is described, using Hirshfeld surfaces to partition crystal space. These molecular Hirshfeld surfaces, so named because they derive from Hirshfeld's stockholder partitioning, divide the crystal into regions where the electron distribution of a sum of spherical atoms for the molecule (the promolecule) dominates the corresponding sum over the crystal (the procrystal). These surfaces reflect intermolecular interactions in a novel visual manner, offering a previously unseen picture of molecular shape in a crystalline environment. Surface features characteristic of different types of intermolecular interactions can be identified, and such features can be revealed by colour coding distances from the surface to the nearest atom exterior or interior to the surface, or by functions of the principal surface curvatures. These simple devices provide a striking and immediate picture of the types of interactions present, and even reflect their relative strengths from molecule to molecule. A complementary two-dimensional mapping is also presented, which summarizes quantitatively the types of intermolecular contacts experienced by molecules in the bulk and presents this information in a convenient colour plot. This paper describes the use of these tools in the compilation of a pictorial glossary of intermolecular interactions, using identifiable patterns of interaction between small molecules to rationalize the often complex mix of interactions displayed by large molecules.

2,049 citations

Journal ArticleDOI
TL;DR: This review documents the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes in small-molecule, synthetic catalyst systems.
Abstract: Hydrogen bonding is responsible for the structure of much of the world around us. The unusual and complex properties of bulk water, the ability of proteins to fold into stable three-dimensional structures, the fidelity of DNA base pairing, and the binding of ligands to receptors are among the manifestations of this ubiquitous noncovalent interaction. In addition to its primacy as a structural determinant, hydrogen bonding plays a crucial functional role in catalysis. Hydrogen bonding to an electrophile serves to decrease the electron density of this species, activating it toward nucleophilic attack. This principle is employed frequently by Nature's catalysts, enzymes, for the acceleration of a wide range of chemical processes. Recently, organic chemists have begun to appreciate the tremendous potential offered by hydrogen bonding as a mechanism for electrophile activation in small-molecule, synthetic catalyst systems. In particular, chiral hydrogen-bond donors have emerged as a broadly applicable class of catalysts for enantioselective synthesis. This review documents these advances, emphasizing the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes.

1,580 citations

References
More filters
Journal ArticleDOI

16,894 citations

Book
01 Jan 1939

14,299 citations


"The hydrogen bond in the solid stat..." refers background in this paper

  • ...The idea that there is a more or less strict relationship between bond length and TMbond order∫ or TMvalence∫ s dates back to Pauling.[3] Several expressions for s f(d) have been proposed,[149, 150] but still the most popular one is Pauling×s exponential relationship [Eq....

    [...]

  • ...More elaborate studies and clear general concepts were published from the 1920s on, with pioneering roles usually attributed to Latimer and Rodebush, Huggins, and Pauling....

    [...]

  • ...The idea that there is a more or less strict relationship between bond length and ™bond order∫ or ™valence∫ s dates back to Pauling....

    [...]

Journal ArticleDOI
TL;DR: In this article, a review of the most promising systematic approaches to resolving this enigma was initially developed by the late M. C. Etter, who applied graph theory to recognize, and then utilize, patterns of hydrogen bonding for the understanding and design of molecular crystals.
Abstract: Whereas much of organic chemistry has classically dealt with the preparation and study of the properties of individual molecules, an increasingly significant portion of the activity in chemical research involves understanding and utilizing the nature of the interactions between molecules. Two representative areas of this evolution are supramolecular chemistry and molecular recognition. The interactions between molecules are governed by intermolecular forces whose energetic and geometric properties are much less well understood than those of classical chemical bonds between atoms. Among the strongest of these interactions, however, are hydrogen bonds, whose directional properties are better understood on the local level (that is, for a single hydrogen bond) than many other types of non-bonded interactions. Nevertheless, the means by which to characterize, understand, and predict the consequences of many hydrogen bonds among molecules, and the resulting formation of molecular aggregates (on the microscopic scale) or crystals (on the macroscopic scale) has remained largely enigmatic. One of the most promising systematic approaches to resolving this enigma was initially developed by the late M. C. Etter, who applied graph theory to recognize, and then utilize, patterns of hydrogen bonding for the understanding and design of molecular crystals. In working with Etter's original ideas the power and potential utility of this approach on one hand, and on the other, the need to develop and extend the initial Etter formalism was generally recognized. It with that latter purpose that we originally undertook the present review.

7,616 citations

Book
13 Mar 1997
TL;DR: In this paper, the authors discuss the properties of strong and moderate hydrogen bonds in biological molecules and include inclusion of inclusion compounds in the graph set theory of graph set theories, which is used in this paper.
Abstract: 1. Brief History 2. Nature and Properties 3. Strong Hydrogen Bonds 4. Moderate Hydrogen Bonds 5. Weak Hydrogen Bonds 6. Cooperativity, Patterns, Graph Set Theory, Liquid Crystals 7. Disorder, Proton Transfer, Isotope Effect, Ferroelectrics, Transitions 8. Water, Water Dimers, Ices, Hydrates 9. Inclusion Compounds 10. Hydrogen Bonding in Biological Molecules 11. Methods

4,461 citations


"The hydrogen bond in the solid stat..." refers background or methods in this paper

  • ...Strong, moderate, and weak hydrogen bonds following the classification of Jeffrey.[6] The numerical data are guiding values only....

    [...]

  • ...The hydrogen bond is a complex interaction composed of several constituents that are different in their natures.[6, 7]...

    [...]

  • ...leads to 1H downfield shifts that are correlated with the length of the hydrogen bond.[6, 56] Thus, NMR shift data can be used to estimate lengths of hydrogen bonds (Figure 5)....

    [...]

  • ...Over 25% of all O H ¥¥¥O hydrogen bonds in carbohydrates are multifurcated, and this fraction is even higher in amino acids.[6]...

    [...]

  • ...Consequently, the arrangements in Scheme 2b and 2c may be called TMthree-∫ and TMfourcentered∫ hydrogen bonds, respectively.[5, 6] This terminology is logical, but leads to confusion from the point of view of regarding hydrogen bonds O H ¥¥¥O as TMthree-center fourelectron∫ interactions, where the H-atom is counted as a center....

    [...]