scispace - formally typeset
Journal ArticleDOI

The IEEE 1918.1 “Tactile Internet” Standards Working Group and its Standards

08 Jan 2019-Vol. 107, Iss: 2, pp 256-279

TL;DR: The aspects of the framework such as its created TI architecture, including the elements, functions, interfaces, and other considerations therein, as well as the novel aspects and differentiating factors compared with, e.g., 5G Ultra-Reliable Low-Latency Communication.

AbstractThe IEEE “Tactile Internet” (TI) Standards working group (WG), designated the numbering IEEE 1918.1, undertakes pioneering work on the development of standards for the TI. This paper describes the WG, its intentions, and its developing baseline standard and the associated reasoning behind that and touches on a further standard already initiated under its scope: IEEE 1918.1.1 on “Haptic Codecs for the TI.” IEEE 1918.1 and its baseline standard aim to set the framework and act as the foundations for the TI, thereby also serving as a basis for further standards developed on TI within the WG. This paper discusses the aspects of the framework such as its created TI architecture, including the elements, functions, interfaces, and other considerations therein, as well as the novel aspects and differentiating factors compared with, e.g., 5G Ultra-Reliable Low-Latency Communication, where it is noted that the TI will likely operate as an overlay on other networks or combinations of networks. Key foundations of the WG and its baseline standard are also highlighted, including the intended use cases and associated requirements that the standard must serve, and the TI’s fundamental definition and assumptions as understood by the WG, among other aspects.

...read more


Citations
More filters
Journal ArticleDOI
TL;DR: The Internet of Nano Things and Tactile Internet are driving the innovation in the H-IoT applications and the future course for improving the Quality of Service (QoS) using these new technologies are identified.
Abstract: The impact of the Internet of Things (IoT) on the advancement of the healthcare industry is immense. The ushering of the Medicine 4.0 has resulted in an increased effort to develop platforms, both at the hardware level as well as the underlying software level. This vision has led to the development of Healthcare IoT (H-IoT) systems. The basic enabling technologies include the communication systems between the sensing nodes and the processors; and the processing algorithms for generating an output from the data collected by the sensors. However, at present, these enabling technologies are also supported by several new technologies. The use of Artificial Intelligence (AI) has transformed the H-IoT systems at almost every level. The fog/edge paradigm is bringing the computing power close to the deployed network and hence mitigating many challenges in the process. While the big data allows handling an enormous amount of data. Additionally, the Software Defined Networks (SDNs) bring flexibility to the system while the blockchains are finding the most novel use cases in H-IoT systems. The Internet of Nano Things (IoNT) and Tactile Internet (TI) are driving the innovation in the H-IoT applications. This paper delves into the ways these technologies are transforming the H-IoT systems and also identifies the future course for improving the Quality of Service (QoS) using these new technologies.

166 citations


Cites background from "The IEEE 1918.1 “Tactile Internet” ..."

  • ...IEEE has already constituted a working group (WG) to standardize the communication in TI [241]....

    [...]

Journal ArticleDOI
24 Apr 2020-Symmetry
TL;DR: This study highlights the most promising lines of research from the recent literature in common directions for the 6G project, exploring the critical issues and key potential features of 6G communications and contributing significantly to opening new horizons for future research directions.
Abstract: The standardization activities of the fifth generation communications are clearly over and deployment has commenced globally. To sustain the competitive edge of wireless networks, industrial and academia synergy have begun to conceptualize the next generation of wireless communication systems (namely, sixth generation, (6G)) aimed at laying the foundation for the stratification of the communication needs of the 2030s. In support of this vision, this study highlights the most promising lines of research from the recent literature in common directions for the 6G project. Its core contribution involves exploring the critical issues and key potential features of 6G communications, including: (i) vision and key features; (ii) challenges and potential solutions; and (iii) research activities. These controversial research topics were profoundly examined in relation to the motivation of their various sub-domains to achieve a precise, concrete, and concise conclusion. Thus, this article will contribute significantly to opening new horizons for future research directions.

78 citations


Cites background from "The IEEE 1918.1 “Tactile Internet” ..."

  • ...Obviously, the existing wireless communication systems are incapable of satisfying these needs; hence, over-the-air fiber communication systems require analysis [25]; • Human-bond communications: Human-centric communication is expected to be one of the main drivers of 6G communication....

    [...]

Journal ArticleDOI
TL;DR: This paper develops, implements, and evaluates Chain-based Low latency VNF ImplemeNtation (CALVIN), a low-latency management framework for distributed Service Function Chains (SFCs), and investigates the practical feasibility of NFV with respect to the tactile Internet latency requirements.
Abstract: Software-defined networking (SDN) and network function virtualization (NFV) processed in multi-access edge computing (MEC) cloud systems have been proposed as critical paradigms for achieving the low latency requirements of the tactile Internet. While virtual network functions (VNFs) allow greater flexibility compared to hardware-based solutions, the VNF abstraction also introduces additional packet processing delays. In this paper, we investigate the practical feasibility of NFV with respect to the tactile Internet latency requirements. We develop, implement, and evaluate Chain-based Low latency VNF ImplemeNtation (CALVIN), a low-latency management framework for distributed Service Function Chains (SFCs). CALVIN classifies VNFs into elementary, basic, and advanced VNFs; moreover, CALVIN implements elementary and basic VNFs in the kernel space, while the advanced VNFs are implemented in the user space. Throughout, CALVIN employs a distributed mapping with one VNF per Virtual Machine (VM) in a MEC system. Furthermore, CALVIN avoids the metadata structure processing and batch processing of packets in the conventional Linux networking stack so as to achieve short per-packet latencies. Our rigorous measurements on off-the-shelf conventional networking and computing hardware demonstrate that CALVIN achieves round-trip times from a MEC ingress point via two elementary forwarding VNFs (one in kernel space and one in user space) and a MEC server to a MEC egress point on the order of 0.32 ms. Our measurements also indicate that MEC network coding and encryption are feasible for small 256 byte packets with an MEC latency budget of 0.35 ms; whereas, large 1400 byte packets can complete the network coding, but not the encryption within the 0.35 ms.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a holistic view on wireless tactile Internet (TI) along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions.
Abstract: Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions.

46 citations

Journal ArticleDOI
Zhihan Lv1
TL;DR: It is found that the model built increases the security of IoD, and there are some shortcomings in the experimental process, but it still provides experimental basis for the later development of IoB.
Abstract: In order to study the security of Internet of drones (IoD), convolutional neural network (CNN) algorithm was compared with autonomous IoD. Moreover, wireless communication technology was used to analyze and design a more optimized model for system security performance. The model constructed was simulated, and relevant data were collected to verify its security performance. The results show that the clustering algorithm based on node energy has the best performance in the performance analysis of IoD. When the number of nodes is appropriate, it can avoid wasting bandwidth resources and overloading, and the number of switching between clusters is less than other algorithms. Therefore, EWCA algorithm can be used to improve the lifetime of the whole network and enhances the availability of IoD. When analyzing the security performance based on the system security interruption probability, it is found that the lower the security interruption rate is when the energy acquisition coefficient α is close to 0.5, the longer the IoD is used for information transmission, and the better the security performance is. The greater the signal-to-noise ratio is, the better the network security performance is, and the network performance is the best when the number of nodes tends to be 10. Therefore, through the research, it is found that the model built increases the security of IoD. Although there are some shortcomings in the experimental process, it still provides experimental basis for the later development of IoD.

34 citations


References
More filters
Journal ArticleDOI
TL;DR: The authors study the impacts of CACC for a highway-merging scenario from four to three lanes and show an improvement of traffic-flow stability and a slight increase in Trafficflow efficiency compared with the merging scenario without equipped vehicles.
Abstract: Cooperative adaptive cruise control (CACC) is an extension of ACC. In addition to measuring the distance to a predecessor, a vehicle can also exchange information with a predecessor by wireless communication. This enables a vehicle to follow its predecessor at a closer distance under tighter control. This paper focuses on the impact of CACC on traffic-flow characteristics. It uses the traffic-flow simulation model MIXIC that was specially designed to study the impact of intelligent vehicles on traffic flow. The authors study the impacts of CACC for a highway-merging scenario from four to three lanes. The results show an improvement of traffic-flow stability and a slight increase in traffic-flow efficiency compared with the merging scenario without equipped vehicles

1,112 citations


"The IEEE 1918.1 “Tactile Internet” ..." refers background in this paper

  • ...This allows to augment the sensing range of each vehicle and to extend the time horizon for situation prediction, with huge benefits for safety [30]....

    [...]

Journal ArticleDOI
TL;DR: Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies are compared over the 0.5–100 GHz range.
Abstract: This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5–100 GHz range.

744 citations


"The IEEE 1918.1 “Tactile Internet” ..." refers background in this paper

  • ..., point-to-point leased line or fiber optic link) [2], [45], [46]....

    [...]

Journal ArticleDOI
TL;DR: The Tactile Internet will become a driver for economic growth and innovation and will help bring a new level of sophistication to societies.
Abstract: Wireless communications today enables us to connect devices and people for an unprecedented exchange of multimedia and data content. The data rates of wireless communications continue to increase, mainly driven by innovation in electronics. Once the latency of communication systems becomes low enough to enable a round-trip delay from terminals through the network back to terminals of approximately 1 ms, an overlooked breakthrough?human tactile to visual feedback control?will change how humans communicate around the world. Using these controls, wireless communications can be the platform for enabling the control and direction of real and virtual objects in many situations of our life. Almost no area of the economy will be left untouched, as this new technology will change health care, mobility, education, manufacturing, smart grids, and much more. The Tactile Internet will become a driver for economic growth and innovation and will help bring a new level of sophistication to societies.

710 citations


"The IEEE 1918.1 “Tactile Internet” ..." refers background in this paper

  • ...The Tactile Internet (TI) is revolutionizing the understanding of what is possible through wireless communication systems, pushing boundaries of Internet-based applications to remote physical interaction, networked control of highly dynamic processes, and the communication of touch experiences (see [1] and [2])....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors provide easy-to-understand access to the core ideas of Industrie 4.0 and describe the basic industrial requirements that need to be fulfilled for its success.
Abstract: In Germany, the term ?Industrie 4.0 [1] is currently prevalent in almost every industry-related fair, conference, or call for public-funded projects. First used at the Hanover Fair in 2011, the term, raised numerous discussions, and the major question is: is it a hit or hype? Even in politics, this term is used frequently with respect to German industry, and research efforts relating to it are currently supported by ?200 million from government-funding bodies?the German Federal Ministry of Education and Research and the German Federal Ministry of Economic Affairs and Energy. The term Industrie 4.0 refers to the fourth industrial revolution and is often understood as the application of the generic concept of cyberphysical systems (CPSs) [5]?[7] to industrial production systems (cyberphysical production systems). In North America, similar ideas have been brought up under the name Industrial Internet [3], [4] by General Electric. The technical basis is very similar to Industrie 4.0, but the application is broader than industrial production and also includes, e.g., smart electrical grids. The various definitions have caused confusion rather than increasing transparency. Overambitious marketing reinforced the confusion (Industrie 4.0 is already being done). This obscures the real and sound future visions behind Industrie 4.0. This column is intended to provide easy-to-understand access to the core ideas of Industrie 4.0 and describes the basic industrial requirements that need to be fulfilled for its success.

611 citations

Journal ArticleDOI
TL;DR: An F-RAN is presented as a promising paradigm for the fifth generation wireless communication system to provide high spectral and energy efficiency and key techniques and their corresponding solutions, including transmission mode selection and interference suppression, are discussed.
Abstract: An F-RAN is presented in this article as a promising paradigm for the fifth generation wireless communication system to provide high spectral and energy efficiency. The core idea is to take full advantage of local radio signal processing, cooperative radio resource management, and distributed storing capabilities in edge devices, which can decrease the heavy burden on fronthaul and avoid large-scale radio signal processing in the centralized baseband unit pool. This article comprehensively presents the system architecture and key techniques of F-RANs. In particular, key techniques and their corresponding solutions, including transmission mode selection and interference suppression, are discussed. Open issues in terms of edge caching, software-defined networking, and network function virtualization are also identified.

577 citations


"The IEEE 1918.1 “Tactile Internet” ..." refers background in this paper

  • ...Recent advances in the development of fog-computingbased radio access network [59] could aid both edge and network domain bootstrapping processes....

    [...]