scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study

TL;DR: In this paper, the structure development as a function of molecular weight in thin films of a model conjugated polymer, poly(3-hexylthiophene) (P3HT), when processed from solution and the melt is discussed.
About: This article is published in Progress in Polymer Science.The article was published on 2013-12-01. It has received 262 citations till now. The article focuses on the topics: Organic electronics & Organic semiconductor.
Citations
More filters
Journal ArticleDOI
TL;DR: Formalisms describing absorption and photoluminescence lineshapes are reviewed, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder.
Abstract: Aggregates of conjugated polymers exhibit two classes of fundamental electronic interactions: those occurring within a given chain and those occurring between chains. The impact of such excitonic interactions on the photophysics of polymer films can be understood using concepts of J- and H-aggregation originally developed by Kasha and coworkers to treat aggregates of small molecules. In polymer assemblies, intrachain through-bond interactions lead to J-aggregate behavior, whereas interchain Coulombic interactions lead to H-aggregate behavior. The photophysics of common emissive conjugated polymer films are determined by a competition between intrachain, J-favoring interactions and interchain, H-favoring interactions. We review formalisms describing absorption and photoluminescence lineshapes, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder. Examples include regioregular polythiophenes, pheneylene-vinylenes, and polydiacetylene.

801 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied how changes in the structural features of poly(3-hexylthiophene (P3HT) polymers affect exciton dissociation processes and concluded that excitons in disordered regions between crystalline and amorphous phases dissociate extrinsically with yield and spatial distribution.
Abstract: The optoelectronic properties of macromolecular semiconductors depend fundamentally on their solid-state microstructure and phase morphology. Hence, it is of central importance to manipulate—from the outset—the molecular arrangement and packing of this special class of polymers from the nano- to the micrometer scale when they are integrated in thin film devices such as photovoltaic cells, transistors or light-emitting diodes, for example. One effective strategy for this purpose is to vary their molecular weight. The reason for this is that materials of different weight-average molecular weight (Mw) lead to different microstructures. Polymers of low Mw form unconnected, extended-chain crystals because of their non-entangled nature. As a result, a polycrystalline, one-phase morphology is obtained. In contrast, high-Mw materials, in which average chain lengths are longer than the length between entanglements, form two-phase morphologies comprised of crystalline moieties embedded in largely un-ordered (amorphous) regions. Here, we discuss how changes in these structural features affect exciton dissociation processes. We utilise neat regioregular poly(3-hexylthiophene) (P3HT) of varying Mw as a model system and apply time-resolved photoluminescence (PL) spectroscopy to probe the electronic landscape in a range of P3HT thin-film architectures. We find that at 10 K, PL originating from recombination of long-lived charge pairs decays over microsecond timescales. Tellingly, both the amplitude and decay-rate distribution depend strongly on Mw. In films with dominant one-phase, chain-extended microstructures, the delayed PL is suppressed as a result of a diminished yield of photoinduced charges. Its decay is significantly slower than in two-phase microstructures. We therefore conclude that excitons in disordered regions between crystalline and amorphous phases dissociate extrinsically with yield and spatial distribution that depend intimately upon microstructure, in agreement with previous work [Paquin et al., Phys. Rev. Lett., 2011, 106, 197401]. We note, however, that independent of Mw, the delayed-PL lineshape due to charge recombination is representative of that in low-Mw microstructures. We thus hypothesize that charge recombination at these low temperatures—and likely also charge generation—occur in torsionally disordered chains forming more strongly coupled photophysical aggregates than those in the steady-state ensemble, producing a delayed PL lineshape reminiscent of that in paraffinic morphologies at steady state.

580 citations

Journal ArticleDOI
TL;DR: This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors and describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin.
Abstract: Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical “imperceptibility” if worn on the skin. A description of techniques of metrology precedes a discussion...

543 citations

Journal ArticleDOI
TL;DR: Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing.
Abstract: Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics: (1) organic semiconductors and in particular conjugated polymers, (2) dopants and counterions, (3) insulating polymers, and (4) conductive fillers. The design and synthesis of conjugated polymers that promise to show good thermoelectric properties are explored, followed by an overview of relevant structure-property relationships. Doping of conjugated polymers is discussed and its interplay with processing as well as structure formation is elucidated. The use of insulating polymers as binders or matrices is proposed, which permit the adjustment of the rheological and mechanical properties of a thermoelectric plastic. Then, nanocomposites of conductive fillers such as carbon nanotubes, graphene and inorganic nanowires in a polymer matrix are introduced. A case study examines poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, which up to now have shown the most promising thermoelectric performance. Finally, a discussion of the advantages provided by bulk architectures e.g. for wearable applications highlights the unique advantages that thermoelectric plastics promise to offer.

407 citations

Journal ArticleDOI
TL;DR: A comprehensive review is given on the principles and advances in the development of thermoelectric materials suitable for energy harvesting power generation, ranging from organic and hybrid organic–inorganic to inorganic materials.

371 citations

References
More filters
Book
15 Dec 1979

10,942 citations

Journal ArticleDOI
11 Oct 1990-Nature
TL;DR: In this article, the authors demonstrate that poly(p-phenylene vinylene), prepared by way of a solution-processable precursor, can be used as the active element in a large-area light-emitting diode.
Abstract: CONJUGATED polymers are organic semiconductors, the semiconducting behaviour being associated with the π molecular orbitals delocalized along the polymer chain. Their main advantage over non-polymeric organic semiconductors is the possibility of processing the polymer to form useful and robust structures. The response of the system to electronic excitation is nonlinear—the injection of an electron and a hole on the conjugated chain can lead to a self-localized excited state which can then decay radiatively, suggesting the possibility of using these materials in electroluminescent devices. We demonstrate here that poly(p-phenylene vinylene), prepared by way of a solution-processable precursor, can be used as the active element in a large-area light-emitting diode. The combination of good structural properties of this polymer, its ease of fabrication, and light emission in the green–yellow part of the spectrum with reasonably high efficiency, suggest that the polymer can be used for the development of large-area light-emitting displays.

10,463 citations

Book
01 Jan 1986
TL;DR: In this article, the viscoelasticity of polymeric liquids was studied in the context of rigid rod-like polymers and concentrated solutions of rigid rods like polymers.
Abstract: Introduction Static properties of polymers Brownian motion Dynamics of flexible polymers in dilute solution Many chain systems Dynamics of a polymer in a fixed network Molecular theory for the viscoelasticity of polymeric liquids Dilute solutions of rigid rodlike polymers Semidilute solutions of rigid rodlike polymers Concentrated solutions of rigid rodlike polymers Index.

10,225 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
10 Sep 1998-Nature
TL;DR: In this article, a host material doped with the phosphorescent dye PtOEP (PtOEP II) was used to achieve high energy transfer from both singlet and triplet states.
Abstract: The efficiency of electroluminescent organic light-emitting devices1,2 can be improved by the introduction3 of a fluorescent dye. Energy transfer from the host to the dye occurs via excitons, but only the singlet spin states induce fluorescent emission; these represent a small fraction (about 25%) of the total excited-state population (the remainder are triplet states). Phosphorescent dyes, however, offer a means of achieving improved light-emission efficiencies, as emission may result from both singlet and triplet states. Here we report high-efficiency (≳90%) energy transfer from both singlet and triplet states, in a host material doped with the phosphorescent dye 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II) (PtOEP). Our doped electroluminescent devices generate saturated red emission with peak external and internal quantum efficiencies of 4% and 23%, respectively. The luminescent efficiencies attainable with phosphorescent dyes may lead to new applications for organic materials. Moreover, our work establishes the utility of PtOEP as a probe of triplet behaviour and energy transfer in organic solid-state systems.

7,023 citations