scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Impact of Smoking and TP53 Mutations in Lung Adenocarcinoma Patients with Targetable Mutations—The Lung Cancer Mutation Consortium (LCMC2)

TL;DR: Patients with adenocarcinoma of the lung and an oncogenic driver mutation treated with effective targeted therapy have a longer survival, regardless of prior smoking history.
Abstract: Purpose: Multiplex genomic profiling is standard of care for patients with advanced lung adenocarcinomas. The Lung Cancer Mutation Consortium (LCMC) is a multi-institutional effort to identify and treat oncogenic driver events in patients with lung adenocarcinomas.Experimental Design: Sixteen U.S. institutions enrolled 1,367 patients with lung cancer in LCMC2; 904 were deemed eligible and had at least one of 14 cancer-related genes profiled using validated methods including genotyping, massively parallel sequencing, and IHC.Results: The use of targeted therapies in patients with EGFR, ERBB2, or BRAF p.V600E mutations, ALK, ROS1, or RET rearrangements, or MET amplification was associated with a survival increment of 1.5 years compared with those with such mutations not receiving targeted therapy, and 1.0 year compared with those lacking a targetable driver. Importantly, 60 patients with a history of smoking derived similar survival benefit from targeted therapy for alterations in EGFR/ALK/ROS1, when compared with 75 never smokers with the same alterations. In addition, coexisting TP53 mutations were associated with shorter survival among patients with EGFR, ALK, or ROS1 alterations.Conclusion: Patients with adenocarcinoma of the lung and an oncogenic driver mutation treated with effective targeted therapy have a longer survival, regardless of prior smoking history. Molecular testing should be performed on all individuals with lung adenocarcinomas irrespective of clinical characteristics. Routine use of massively parallel sequencing enables detection of both targetable driver alterations and tumor suppressor gene and other alterations that have potential significance for therapy selection and as predictive markers for the efficacy of treatment. Clin Cancer Res; 24(5); 1038-47. ©2017 AACR.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The impact of co-mutations on the pathogenesis, biology, microenvironmental interactions and therapeutic vulnerabilities of non-small-cell lung cancer is discussed and the challenges and opportunities presented for personalized anticancer therapy, as well as the expanding field of precision immunotherapy are assessed.
Abstract: The impressive clinical activity of small-molecule receptor tyrosine kinase inhibitors for oncogene-addicted subgroups of non-small-cell lung cancer (for example, those driven by activating mutations in the gene encoding epidermal growth factor receptor (EGFR) or rearrangements in the genes encoding the receptor tyrosine kinases anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 (ROS1) and rearranged during transfection (RET)) has established an oncogene-centric molecular classification paradigm in this disease. However, recent studies have revealed considerable phenotypic diversity downstream of tumour-initiating oncogenes. Co-occurring genomic alterations, particularly in tumour suppressor genes such as TP53 and LKB1 (also known as STK11), have emerged as core determinants of the molecular and clinical heterogeneity of oncogene-driven lung cancer subgroups through their effects on both tumour cell-intrinsic and non-cell-autonomous cancer hallmarks. In this Review, we discuss the impact of co-mutations on the pathogenesis, biology, microenvironmental interactions and therapeutic vulnerabilities of non-small-cell lung cancer and assess the challenges and opportunities that co-mutations present for personalized anticancer therapy, as well as the expanding field of precision immunotherapy.

487 citations

Journal ArticleDOI
TL;DR: Clinical evidence of the heterogeneity of resistance in advanced NSCLC is provided and a need for clinical trial strategies that can overcome multiple concomitant resistance mechanisms or strategies for preventing such resistance is provided.
Abstract: Importance Osimertinib mesylate is used globally to treatEGFR-mutant non–small cell lung cancer (NSCLC) with tyrosine kinase inhibitor resistance mediated by theEGFRT790M mutation. Acquired resistance to osimertinib is a growing clinical challenge that is poorly understood. Objective To understand the molecular mechanisms of acquired resistance to osimertinib and their clinical behavior. Design, Setting, and Participants Patients with advanced NSCLC who received osimertinib for T790M-positive acquired resistance to prior EGFR tyrosine kinase inhibitor were identified from a multi-institutional cohort (n = 143) and a confirmatory trial cohort (NCT01802632) (n = 110). Next-generation sequencing of tumor biopsies after osimertinib resistance was performed. Genotyping of plasma cell-free DNA was studied as an orthogonal approach, including serial plasma samples when available. The study and analysis were finalized on November 9, 2017. Main Outcomes and Measures Mechanisms of resistance and their association with time to treatment discontinuation on osimertinib. Results Of the 143 patients evaluated, 41 (28 [68%] women) had tumor next-generation sequencing after acquired resistance to osimertinib. Among 13 patients (32%) with maintained T790M at the time of resistance,EGFRC797S was seen in 9 patients (22%). Among 28 individuals (68%) with loss of T790M, a range of competing resistance mechanisms was detected, including novel mechanisms such as acquiredKRASmutations and targetable gene fusions. Time to treatment discontinuation was shorter in patients with T790M loss (6.1 vs 15.2 months), suggesting emergence of pre-existing resistant clones; this finding was confirmed in a validation cohort of 110 patients with plasma cell-free DNA genotyping performed after osimertinib resistance. In studies of serial plasma levels of mutantEGFR, loss of T790M at resistance was associated with a smaller decrease in levels of theEGFRdriver mutation after 1 to 3 weeks of therapy (100% vs 83% decrease;P = .01). Conclusions and Relevance Acquired resistance to osimertinib mediated by loss of the T790M mutation is associated with early resistance and a range of competing resistance mechanisms. These data provide clinical evidence of the heterogeneity of resistance in advanced NSCLC and a need for clinical trial strategies that can overcome multiple concomitant resistance mechanisms or strategies for preventing such resistance.

467 citations

Journal ArticleDOI
TL;DR: The era of personalized medicine for advanced-stage non-small-cell lung cancer (NSCLC) began when biomarker-based evidence of molecular pathway and/or oncogene addiction of the tumour became mandatory for the allocation of specific targeted therapies.
Abstract: The era of personalized medicine for advanced-stage non-small-cell lung cancer (NSCLC) began when biomarker-based evidence of molecular pathway and/or oncogene addiction of the tumour became mandatory for the allocation of specific targeted therapies. More recently, the immunotherapy revolution, specifically, the development of immune-checkpoint inhibitors (ICIs), has dramatically altered the NSCLC treatment landscape. Herein, we compare and contrast the clinical development of immunotherapy and oncogene-directed therapy for NSCLC, focusing on the role of predictive biomarkers. Immunotherapy biomarkers are fundamentally different from oncogene biomarkers in that they are continuous rather than categorical (binary), spatially and temporally variable and reliant on multiple complex interactions rather than a single, dominant determinant. The performance of predictive biomarkers for ICIs might be improved by combining different markers to reduce the assumptive risks associated with each one. Novel combinations with chemotherapy and ICIs complicate biomarker discovery but do not decrease the value of the markers identified. Perfectly predictive biomarkers of benefit from immunotherapy are unlikely to be identified, although exclusionary biomarkers of minimal benefit or an unacceptable risk of toxicity might be feasible. The clinical adoption and applicability of such biomarkers might vary depending on line of treatment, the available therapeutic alternatives and health economic considerations. The advent of effective molecularly targeted treatments and immunotherapies for non-small-cell lung cancer (NSCLC) has greatly improved patient outcomes. Whereas most patients selected for treatment with molecularly targeted drugs derive benefits from these agents, benefit from immunotherapy is more difficult to predict. Herein, Camidge and colleagues compare and contrast predictive biomarkers for immunotherapy and targeted therapy of NSCLC to highlight considerations for biomarker development.

307 citations

Journal ArticleDOI
TL;DR: A significant enrichment for fusions in DNAseq driver–negative samples with low TMB is observed, supporting the prioritization of such cases for additional RNAseq.
Abstract: Purpose: Targeted next-generation sequencing of DNA has become more widely used in the management of patients with lung adenocarcinoma; however, no clear mitogenic driver alteration is found in some cases. We evaluated the incremental benefit of targeted RNA sequencing (RNAseq) in the identification of gene fusions and MET exon 14 (METex14) alterations in DNA sequencing (DNAseq) driver–negative lung cancers. Experimental Design: Lung cancers driver negative by MSK-IMPACT underwent further analysis using a custom RNAseq panel (MSK-Fusion). Tumor mutation burden (TMB) was assessed as a potential prioritization criterion for targeted RNAseq. Results: As part of prospective clinical genomic testing, we profiled 2,522 lung adenocarcinomas using MSK-IMPACT, which identified 195 (7.7%) fusions and 119 (4.7%) METex14 alterations. Among 275 driver-negative cases with available tissue, 254 (92%) had sufficient material for RNAseq. A previously undetected alteration was identified in 14% (36/254) of cases, 33 of which were actionable (27 in-frame fusions, 6 METex14). Of these 33 patients, 10 then received matched targeted therapy, which achieved clinical benefit in 8 (80%). In the 32% (81/254) of DNAseq driver–negative cases with low TMB [0–5 mutations/Megabase (mut/Mb)], 25 (31%) were positive for previously undetected gene fusions on RNAseq, whereas, in 151 cases with TMB >5 mut/Mb, only 7% were positive for fusions (P Conclusions: Targeted RNAseq assays should be used in all cases that appear driver negative by DNAseq assays to ensure comprehensive detection of actionable gene rearrangements. Furthermore, we observed a significant enrichment for fusions in DNAseq driver–negative samples with low TMB, supporting the prioritization of such cases for additional RNAseq. See related commentary by Davies and Aisner, p. 4586

273 citations

Journal ArticleDOI
TL;DR: The majority of these trials demonstrated that matched therapy is associated with superior outcomes compared to non-matched therapy across tumor types and in specific cancers, and challenges and opportunities to accelerate the implementation of precision oncology are discussed.

244 citations

References
More filters
Journal ArticleDOI
TL;DR: The American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2017, 1,688,780 new cancer cases and 600,920 cancer deaths are projected to occur in the United States. For all sites combined, the cancer incidence rate is 20% higher in men than in women, while the cancer death rate is 40% higher. However, sex disparities vary by cancer type. For example, thyroid cancer incidence rates are 3-fold higher in women than in men (21 vs 7 per 100,000 population), despite equivalent death rates (0.5 per 100,000 population), largely reflecting sex differences in the "epidemic of diagnosis." Over the past decade of available data, the overall cancer incidence rate (2004-2013) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2005-2014) declined by about 1.5% annually in both men and women. From 1991 to 2014, the overall cancer death rate dropped 25%, translating to approximately 2,143,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the cancer death rate was 15% higher in blacks than in whites in 2014, increasing access to care as a result of the Patient Protection and Affordable Care Act may expedite the narrowing racial gap; from 2010 to 2015, the proportion of blacks who were uninsured halved, from 21% to 11%, as it did for Hispanics (31% to 16%). Gains in coverage for traditionally underserved Americans will facilitate the broader application of existing cancer control knowledge across every segment of the population. CA Cancer J Clin 2017;67:7-30. © 2017 American Cancer Society.

13,427 citations

Journal ArticleDOI
TL;DR: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib, and these mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor.
Abstract: BACKGROUND Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. RESULTS Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. CONCLUSIONS A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib.

10,879 citations

Journal ArticleDOI
04 Jun 2004-Science
TL;DR: Results suggest that EGFR mutations may predict sensitivity to gefitinib, and treatment with the EGFR kinase inhibitor gefitsinib causes tumor regression in some patients with NSCLC, more frequently in Japan.
Abstract: Receptor tyrosine kinase genes were sequenced in nonsmall cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15 of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinibinsensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib. Protein kinase activation by somatic mutation or

9,265 citations

Journal ArticleDOI
TL;DR: Gefit inib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia and the presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib.
Abstract: METHODS In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival. RESULTS The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin–paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin– paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin–paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin–paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin–paclitaxel group. CONCLUSIONS Gefitinib is superior to carboplatin–paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.)

7,246 citations

Journal ArticleDOI
02 Aug 2007-Nature
TL;DR: It is shown that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells.
Abstract: Improvement in the clinical outcome of lung cancer is likely to be achieved by identification of the molecular events that underlie its pathogenesis. Here we show that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells. Mouse 3T3 fibroblasts forced to express this human fusion tyrosine kinase generated transformed foci in culture and subcutaneous tumours in nude mice. The EML4-ALK fusion transcript was detected in 6.7% (5 out of 75) of NSCLC patients examined; these individuals were distinct from those harbouring mutations in the epidermal growth factor receptor gene. Our data demonstrate that a subset of NSCLC patients may express a transforming fusion kinase that is a promising candidate for a therapeutic target as well as for a diagnostic molecular marker in NSCLC.

4,826 citations

Related Papers (5)