scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The increasing importance of herbicides in worldwide crop production

01 Oct 2013-Pest Management Science (Pest Manag Sci)-Vol. 69, Iss: 10, pp 1099-1105
TL;DR: It is inevitable that herbicide use will increase in sub-Saharan Africa, not only because millions of people are leaving rural areas, creating shortages of hand weeders, but also because of the need to increase crop yields.
Abstract: Herbicide use is increasingly being adopted around the world. Many developing countries (India, China, Bangladesh) are facing shortages of workers to hand weed fields as millions of people move from rural to urban areas. In these countries, herbicides are far cheaper and more readily available than labor for hand weeding. History shows that in industrializing countries in the past, including the United States, Germany, Japan and South Korea, the same phenomenon has occurred-as workers have left agriculture, herbicides have been adopted. It is inevitable that herbicide use will increase in sub-Saharan Africa, not only because millions of people are leaving rural areas, creating shortages of hand weeders, but also because of the need to increase crop yields. Hand weeding has never been a very efficient method of weed control-often performed too late and not frequently enough. Uncontrolled weeds have been a major cause of low crop yields in sub-Saharan Africa for a long time. In many parts of the world, herbicides are being increasingly used to replace tillage in order to improve environmental conditions. In comparison with tillage, herbicide use reduces erosion, fuel use, greenhouse gas emissions and nutrient run-off and conserves water.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Allelopathy has a pertinent significance for ecological, sustainable, and integrated weed management systems and can be utilized for suppressing weeds in field crops.

436 citations


Cites background from "The increasing importance of herbic..."

  • ...Decreasing availability and increasing cost of labour, and inconsistent weed control are among the major challenges in hand weeding (Carballido et al., 2013; Gianessi, 2013)....

    [...]

Journal ArticleDOI
TL;DR: This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides and the future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are explored.

354 citations

Journal ArticleDOI
TL;DR: From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems.
Abstract: Current herbicide and herbicide trait practices are changing in response to the rapid spread of glyphosate-resistant weeds. Growers urgently needed glyphosate when glyphosate-resistant crops became available because weeds were becoming widely resistant to most commonly used selective herbicides, making weed management too complex and time consuming for large farm operations. Glyphosate made weed management easy and efficient by controlling all emerged weeds at a wide range of application timings. However, the intensive use of glyphosate over wide areas and concomitant decline in the use of other herbicides led eventually to the widespread evolution of weeds resistant to glyphosate. Today, weeds that are resistant to glyphosate and other herbicide types are threatening current crop production practices. Unfortunately, all commercial herbicide modes of action are over 20 years old and have resistant weed problems. The severity of the problem has prompted the renewal of efforts to discover new weed management technologies. One technology will be a new generation of crops with resistance to glyphosate, glufosinate and other existing herbicide modes of action. Other technologies will include new chemical, biological, cultural and mechanical methods for weed management. From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems. © 2014 Society of Chemical Industry

168 citations

Journal ArticleDOI
TL;DR: This review endeavors to provide a current overview of herbicide resistance challenges in the major crop production areas of the world and discusses some research initiatives designed to address portions of the problem.
Abstract: Herbicide-resistant weeds have been observed since the early years of synthetic herbicide development in the 1950s and 1960s. Since that time there has been a consistent increase in the number of cases of herbicide resistance and the impact of herbicide-resistant weeds. Although the nature of crop production varies widely around the world, herbicides have become a primary tool for weed control in most areas. Dependence on herbicides continues to increase as global populations migrate away from rural areas to cities and the agricultural labor force declines. This increased use of herbicides and the concurrent selection pressure have resulted in a rise in cases of multiple resistance, leaving some farmers with few or no herbicide options for certain weed infestations. Global population and economic forces drive many farmer choices regarding crop production and weed control. The challenge is how to insert best management practices into the decision-making process while addressing various economic and regulatory needs. This review endeavors to provide a current overview of herbicide resistance challenges in the major crop production areas of the world and discusses some research initiatives designed to address portions of the problem. © 2017 Society of Chemical Industry.

168 citations

Journal ArticleDOI
11 Jul 2018-Nature
TL;DR: The discovery and validation of a potent herbicide that targets a critical metabolic enzyme that is required for plant survival is presented and demonstrates the potential of using a resistance-gene-directed approach in the discovery of bioactive natural products.
Abstract: Bioactive natural products have evolved to inhibit specific cellular targets and have served as lead molecules for health and agricultural applications for the past century1-3. The post-genomics era has brought a renaissance in the discovery of natural products using synthetic-biology tools4-6. However, compared to traditional bioactivity-guided approaches, genome mining of natural products with specific and potent biological activities remains challenging4. Here we present the discovery and validation of a potent herbicide that targets a critical metabolic enzyme that is required for plant survival. Our approach is based on the co-clustering of a self-resistance gene in the natural-product biosynthesis gene cluster7-9, which provides insight into the potential biological activity of the encoded compound. We targeted dihydroxy-acid dehydratase in the branched-chain amino acid biosynthetic pathway in plants; the last step in this pathway is often targeted for herbicide development10. We show that the fungal sesquiterpenoid aspterric acid, which was discovered using the method described above, is a sub-micromolar inhibitor of dihydroxy-acid dehydratase that is effective as a herbicide in spray applications. The self-resistance gene astD was validated to be insensitive to aspterric acid and was deployed as a transgene in the establishment of plants that are resistant to aspterric acid. This herbicide-resistance gene combination complements the urgent ongoing efforts to overcome weed resistance11. Our discovery demonstrates the potential of using a resistance-gene-directed approach in the discovery of bioactive natural products.

152 citations

References
More filters
Book ChapterDOI
TL;DR: In this article, the authors present an integrated package of technologies for dry-DSR, including the identification of rice traits associated with the attainment of optimum grain yield with dry seeding.
Abstract: Rice (Oryza sativa L.), a staple food for more than half of the world population, is commonly grown by transplanting seedlings into puddled soil (wet tillage) in Asia. This production system is labor-, water-, and energy-intensive and is becoming less profitable as these resources are becoming increasingly scarce. It also deteriorates the physical properties of soil, adversely affects the performance of succeeding upland crops, and contributes to methane emissions. These factors demand a major shift from puddled transplanting to direct seeding of rice (DSR) in irrigated rice ecosystems. Direct seeding (especially wet seeding) is widely adopted in some and is spreading to other Asian countries. However, combining dry seeding (Dry-DSR) with zero/reduced tillage (e.g., conservation agriculture (CA)) is gaining momentum as a pathway to address rising water and labor scarcity, and to enhance system sustainability. Published studies show various benefits from direct seeding compared with puddled transplanting, which typically include (1) similar yields; (2) savings in irrigation water, labor, and production costs; (3) higher net economic returns; and (4) a reduction in methane emissions. Despite these benefits, the yields have been variable in some regions, especially with dry seeding combined with reduced/zero tillage due to (1) uneven and poor crop stand, (2) poor weed control, (3) higher spikelet sterility, (4) crop lodging, and (5) poor knowledge of water and nutrient management. In addition, rice varieties currently used for DSR are primarily selected and bred for puddled transplanted rice. Risks associated with a shift from puddled transplanting to DSR include (1) a shift toward hard-to-control weed flora, (2) development of herbicide resistance in weeds, (3) evolution of weedy rice, (4) increases in soil-borne pathogens such as nematodes, (5) higher emissions of nitrous oxide—a potent greenhouse gas , and (6) nutrient disorders, especially N and micronutrients. The objectives of this chapter are to review (1) drivers of the shift from puddled transplanting to DSR; (2) overall crop performance, including resource-use efficiencies of DSR; and (3) lessons from countries where DSR has already been widely adopted. Based on the existing evidence, we present an integrated package of technologies for Dry-DSR, including the identification of rice traits associated with the attainment of optimum grain yield with Dry-DSR.

513 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the experiences, potential advantages and problems associated with direct seeded rice (DSR) and suggest likely future patterns of changes in rice cultivation, including the development of early-maturing varieties and improved nutrient management techniques along with increased availability of chemical weed control methods.
Abstract: Rice is one of the most important food crops in the world, and staple for more than half of the global population. Looming water crisis, water-intensive nature of rice cultivation and escalating labour costs drive the search for alternative management methods to increase water productivity in rice cultivation. Direct seeded rice (DSR) has received much attention because of its low-input demand. It involves sowing pre-germinated seed into a puddled soil surface (wet seeding), standing water (water seeding) or dry seeding into a prepared seedbed (dry seeding). In Europe, Australia and the United States, DSR is highly mechanised. The development of early-maturing varieties and improved nutrient management techniques along with increased availability of chemical weed control methods has encouraged many farmers in the Philippines, Malaysia, Thailand and India to switch from transplanted to DSR culture. This shift should substantially reduce crop water requirements, soil organic-matter turnover, nutrient relations, carbon sequestering, weed biota and greenhouse-gas emissions. Still, weed infestation can cause large yield losses in DSR. In addition, recent incidences of blast disease, crop lodging, impaired kernel quality and stagnant yields across the years are major challenges in this regard. In this review, we discuss the experiences, potential advantages and problems associated with DSR, and suggest likely future patterns of changes in rice cultivation.

476 citations

Journal ArticleDOI
TL;DR: In this article, a series of experiments were conducted where a range of injuries due to rice pests (pathogens, insects, and weeds) was manipulated simultaneously with a variety of production factors (fertilizer input, water supply, crop establishment method, variety).
Abstract: A series of experiments was conducted where a range of injuries due to rice pests (pathogens, insects, and weeds) was manipulated simultaneously with a range of production factors (fertilizer input, water supply, crop establishment method, variety) in different seasons and years. These factors were chosen to represent lowland rice production situations characterized in surveys conducted in tropical Asia and their corresponding range of attainable yield. Experiments complemented one another in exploring the response surface of rice yields to yield-limiting and yield-reducing factors. The resulting experimental data base consisted of 445 individual plots and involved 11 manipulated injuries in a range of attainable yields of 2 to 11 t ha-1. A first, nonparametric, multivariate analysis led to a hierarchy of potential injuries, from marginally (e.g., bacterial leaf blight) to extremely harmful (e.g., rice tungro disease). A second, parametric, multivariate approach resulted in a multiple regression ...

293 citations

Journal ArticleDOI
TL;DR: Most of the agronomic options for improving rainfall-use efficiency in rainfed agricultural systems decrease water losses by soil evaporation, runoff, throughflow, deep drainage, and competing weeds, thereby making more water available for increased water use by the crop.
Abstract: Yields of dryland (rainfed) wheat in Australia have increased steadily over the past century despite rainfall being unchanged, indicating that the rainfall-use efficiency has increased. Analyses suggest that at least half of the increase in rainfall-use efficiency can be attributed to improved agronomic management. Various methods of analysing the factors influencing dryland yields and rainfall-use efficiency, such as simple rules and more complex models, are presented and the agronomic factors influencing water use, water-use efficiency, and harvest index of crops are discussed. The adoption of agronomic procedures such as minimum tillage, appropriate fertilizer use, improved weed/ disease/insect control, timely planting, and a range of rotation options, in conjunction with new cultivars, has the potential to increase the yields and rainfalluse efficiency of dryland crops. It is concluded that most of the agronomic options for improving rainfalluse efficiency in rainfed agricultural systems decrease water losses by soil evaporation, runoff, throughflow, deep drainage, and competing weeds, thereby making more water available for increased water use by the crop.

291 citations

Trending Questions (1)
Why there are more of using herbicide instead of labor?

The paper states that herbicides are cheaper and more readily available than labor for hand weeding, leading to their increased use in countries facing shortages of workers.