The indoor radio propagation channel
01 Jul 1993-Vol. 81, Iss: 7, pp 943-968
TL;DR: In this paper, a tutorial survey of radio propagation in indoor environments is presented, where the channel is modeled as a linear time-varying filter at each location in the 3D space, and the properties of the filter's impulse response are described.
Abstract: In this tutorial survey the principles of radio propagation in indoor environments are reviewed. The channel is modeled as a linear time-varying filter at each location in the three-dimensional space, and the properties of the filter's impulse response are described. Theoretical distributions of the sequences of arrival times, amplitudes and phases are presented. Other relevant concepts such as spatial and temporal variations of the channel, large-scale path losses, mean excess delay and RMS delay spread are explored. Propagation characteristics of the indoor and outdoor channels are compared and their major differences are outlined. Previous measurement and modeling efforts are surveyed, and areas for future research are suggested. >
Citations
More filters
26 Mar 2000
TL;DR: RADAR is presented, a radio-frequency (RF)-based system for locating and tracking users inside buildings that combines empirical measurements with signal propagation modeling to determine user location and thereby enable location-aware services and applications.
Abstract: The proliferation of mobile computing devices and local-area wireless networks has fostered a growing interest in location-aware systems and services. In this paper we present RADAR, a radio-frequency (RF)-based system for locating and tracking users inside buildings. RADAR operates by recording and processing signal strength information at multiple base stations positioned to provide overlapping coverage in the area of interest. It combines empirical measurements with signal propagation modeling to determine user location and thereby enable location-aware services and applications. We present experimental results that demonstrate the ability of RADAR to estimate user location with a high degree of accuracy.
8,667Â citations
TL;DR: Using the models, the authors have shown the calculation of a Cramer-Rao bound (CRB) on the location estimation precision possible for a given set of measurements in wireless sensor networks.
Abstract: Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of applications. In cooperative localization, sensors work together in a peer-to-peer manner to make measurements and then forms a map of the network. Various application requirements influence the design of sensor localization systems. In this article, the authors describe the measurement-based statistical models useful to describe time-of-arrival (TOA), angle-of-arrival (AOA), and received-signal-strength (RSS) measurements in wireless sensor networks. Wideband and ultra-wideband (UWB) measurements, and RF and acoustic media are also discussed. Using the models, the authors have shown the calculation of a Cramer-Rao bound (CRB) on the location estimation precision possible for a given set of measurements. The article briefly surveys a large and growing body of sensor localization algorithms. This article is intended to emphasize the basic statistical signal processing background necessary to understand the state-of-the-art and to make progress in the new and largely open areas of sensor network localization research.
3,080Â citations
01 Aug 1997
TL;DR: This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them.
Abstract: Array processing involves manipulation of signals induced on various antenna elements. Its capabilities of steering nulls to reduce cochannel interferences and pointing independent beams toward various mobiles, as well as its ability to provide estimates of directions of radiating sources, make it attractive to a mobile communications system designer. Array processing is expected to play an important role in fulfilling the increased demands of various mobile communications services. Part I of this paper showed how an array could be utilized in different configurations to improve the performance of mobile communications systems, with references to various studies where feasibility of apt array system for mobile communications is considered. This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them. This paper brings together almost all aspects of array signal processing.
2,169Â citations
TL;DR: This work derives CRBs and maximum-likelihood estimators (MLEs) under Gaussian and log-normal models for the TOA and RSS measurements, respectively for sensor location estimation when sensors measure received signal strength or time-of-arrival between themselves and neighboring sensors.
Abstract: Self-configuration in wireless sensor networks is a general class of estimation problems that we study via the Cramer-Rao bound (CRB). Specifically, we consider sensor location estimation when sensors measure received signal strength (RSS) or time-of-arrival (TOA) between themselves and neighboring sensors. A small fraction of sensors in the network have a known location, whereas the remaining locations must be estimated. We derive CRBs and maximum-likelihood estimators (MLEs) under Gaussian and log-normal models for the TOA and RSS measurements, respectively. An extensive TOA and RSS measurement campaign in an indoor office area illustrates MLE performance. Finally, relative location estimation algorithms are implemented in a wireless sensor network testbed and deployed in indoor and outdoor environments. The measurements and testbed experiments demonstrate 1-m RMS location errors using TOA, and 1- to 2-m RMS location errors using RSS.
1,881Â citations
TL;DR: This tutorial article overviews the history of femtocells, demystifies their key aspects, and provides a preview of the next few years, which the authors believe will see a rapid acceleration towards small cell technology.
Abstract: Femtocells, despite their name, pose a potentially large disruption to the carefully planned cellular networks that now connect a majority of the planet's citizens to the Internet and with each other. Femtocells - which by the end of 2010 already outnumbered traditional base stations and at the time of publication are being deployed at a rate of about five million a year - both enhance and interfere with this network in ways that are not yet well understood. Will femtocells be crucial for offloading data and video from the creaking traditional network? Or will femtocells prove more trouble than they are worth, undermining decades of careful base station deployment with unpredictable interference while delivering only limited gains? Or possibly neither: are femtocells just a "flash in the pan"; an exciting but short-lived stage of network evolution that will be rendered obsolete by improved WiFi offloading, new backhaul regulations and/or pricing, or other unforeseen technological developments? This tutorial article overviews the history of femtocells, demystifies their key aspects, and provides a preview of the next few years, which the authors believe will see a rapid acceleration towards small cell technology. In the course of the article, we also position and introduce the articles that headline this special issue.
1,277Â citations
References
More filters
Book•
01 Jan 1965
TL;DR: This chapter discusses the concept of a Random Variable, the meaning of Probability, and the axioms of probability in terms of Markov Chains and Queueing Theory.
Abstract: Part 1 Probability and Random Variables 1 The Meaning of Probability 2 The Axioms of Probability 3 Repeated Trials 4 The Concept of a Random Variable 5 Functions of One Random Variable 6 Two Random Variables 7 Sequences of Random Variables 8 Statistics Part 2 Stochastic Processes 9 General Concepts 10 Random Walk and Other Applications 11 Spectral Representation 12 Spectral Estimation 13 Mean Square Estimation 14 Entropy 15 Markov Chains 16 Markov Processes and Queueing Theory
13,886Â citations
Book•
01 Feb 1975
TL;DR: An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.
Abstract: From the Publisher:
IEEE Press is pleased to bring back into print this definitive text and reference covering all aspects of microwave mobile systems design. Encompassing ten years of advanced research in the field, this invaluable resource reviews basic microwave theory, explains how cellular systems work, and presents useful techniques for effective systems development. The return of this classic volume should be welcomed by all those seeking the original authoritative and complete source of information on this emerging technology. An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.
9,064Â citations
TL;DR: In this paper, the authors used the representations of the noise currents given in Section 2.8 to derive some statistical properties of I(t) and its zeros and maxima.
Abstract: In this section we use the representations of the noise currents given in section 2.8 to derive some statistical properties of I(t). The first six sections are concerned with the probability distribution of I(t) and of its zeros and maxima. Sections 3.7 and 3.8 are concerned with the statistical properties of the envelope of I(t). Fluctuations of integrals involving I2(t) are discussed in section 3.9. The probability distribution of a sine wave plus a noise current is given in 3.10 and in 3.11 an alternative method of deriving the results of Part III is mentioned. Prof. Uhlenbeck has pointed out that much of the material in this Part is closely connected with the theory of Markoff processes. Also S. Chandrasekhar has written a review of a class of physical problems which is related, in a general way, to the present subject.22
5,806Â citations
Book•
01 Jan 1979
TL;DR: An electromagnetic pulse counter having successively operable, contact-operating armatures that are movable to a rest position, an intermediate position and an active position between the main pole and the secondary pole of a magnetic circuit.
Abstract: An electromagnetic pulse counter having successively operable, contact-operating armatures. The armatures are movable to a rest position, an intermediate position and an active position between the main pole and the secondary pole of a magnetic circuit.
4,897Â citations
TL;DR: The results of indoor multipath propagation measurements using 10 ns, 1.5 GHz, radarlike pulses are presented for a medium-size office building, and a simple statistical multipath model of the indoor radio channel appears to be extendable to other buildings.
Abstract: The results of indoor multipath propagation measurements using 10 ns, 1.5 GHz, radarlike pulses are presented for a medium-size office building. The observed channel was very slowly time varying, with the delay spread extending over a range up to about 200 ns and rms values of up to about 50 ns. The attenuation varied over a 60 dB dynamic range. A simple statistical multipath model of the indoor radio channel is also presented, which fits our measurements well, and more importantly, appears to be extendable to other buildings. With this model, the received signal rays arrive in clusters. The rays have independent uniform phases, and independent Rayleigh amplitudes with variances that decay exponentially with cluster and ray delays. The clusters, and the rays within the cluster, form Poisson arrival processes with different, but fixed, rates. The clusters are formed by the building superstructure, while the individual rays are formed by objects in the vicinities of the transmitter and the receiver.
3,194Â citations