scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The initial fabric of undisturbed and reconstituted fluvial sand

TL;DR: In this article, high-quality undisturbed samples of fluvial sand were obtained from the field using the ground freezing technique, and in the laboratory, the in situ void ratio of these high quality undisturbated frozen samples was analyzed.
Abstract: High-quality undisturbed samples of fluvial sand were obtained from the field using the ground freezing technique. In the laboratory, the in situ void ratio of these high-quality undisturbed frozen...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors investigated the effects of partial saturation on the undrained cyclic behavior of sand and found that partially saturated specimens exhibit higher liquefaction resistance than those prepared with the powder.
Abstract: In geotechnical engineering, triaxial testing is widely adopted to evaluate the mechanical behavior of sand. Methods of specimen preparation for triaxial tests on dry and completely saturated sand are well established in the literature, whereas very little guidance exists on the preparation of partially saturated sand at relatively high degrees of saturation (typically Sr > 80 %). The purpose of this study is to elucidate the suitable method of specimen preparation for partially saturated sand using sodium percarbonate and investigate the effects of partial saturation on the undrained cyclic behavior of sand. Loosely and densely packed specimens are prepared in a dynamic triaxial apparatus through dry pluviation and tamping of sand. For tests on fully saturated sand, dry specimens are flushed with carbon dioxide and deaired water and saturated applying back pressure. For tests on partially saturated sand, sodium percarbonate is used in either fine powder or aqueous solution form to create oxygen bubbles in the voids, reducing the degree of saturation of specimens. The results suggest that not only the degree of saturation but also the way partially saturated specimens are prepared affects the liquefaction resistance. At the same level of saturation and principal stress difference, specimens prepared with the aqueous solution exhibit higher liquefaction resistance than those prepared with the powder. The solution of sodium percarbonate proves to be a more reliable and repeatable technique for preparing partially saturated triaxial specimens with relatively high degrees of saturation.

5 citations

Journal ArticleDOI
TL;DR: In this paper , a series of experimental tests were conducted to elucidate the coupled effects of inherent and induced anisotropy on reliquefaction resistance of Toyoura sand, which have not been studied before.
Abstract: Recent earthquakes in New Zealand and Japan showed that preshaking histories significantly affected the reliquefaction resistance of soils. In this study, a series of experimental tests were conducted to elucidate the coupled effects of inherent and induced anisotropy on reliquefaction resistance of Toyoura sand, which have not been studied before. Accordingly, loose and dense Toyoura sands were prepared with two different methods: dry deposition (DD) and moist tamping (MT). The specimens were sheared cyclically using a hollow cylinder torsional shear apparatus (HCTSA) under various cyclic stress ratios (CSR) up to different residual shear strains (γres) and reconsolidated at different states. The experimental results were assessed from various perspectives, including stress-strain relationships, failure mechanisms, liquefaction/reliquefaction resistance, excess pore water pressure (EPWP) generation, and compressibility in conjunction with micromechanical interpretations. It was shown that fabric evolution affects the reliquefaction characteristics of Toyoura sand substantially. Interestingly, a unique correlation exists between EPWP and shear strain accumulation for all tests. An energy-based model was developed to uniquely correlate the dissipated energy with the cyclic resistance based only on residual shear strains, showing a great promise to develop a unified, energy-based criterion for quantifying liquefaction/reliquefaction resistance of soils with different fabrics.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the impact of the selection of moist tamping samples on the performance of tailings dams has been investigated, and a detailed analysis of typical errors affecting initial void ratio evaluation is presented to ensure that comparisons between different methods are done with the highest degree of confidence possible.
Abstract: Whereas moist-tamped specimens of silts and sands are most used in engineering practice to characterize tailings, offshore sediments, and fluvial/alluvial deposits, design parameters derived from moist-tamping data sets can be significantly different from those obtained from slurry or underwater deposition. This study shows that moist-tamped silty and sandy specimens may exhibit phase transformation at stress ratios that are 25% to 50% lower than those observed for slurry-deposited specimens. Conversely, the small-strain stiffness of the moist-tamped specimens tested can be 50% higher than those from slurry deposition. With tailings dams’ performance receiving increased worldwide attention due to recent dam failures in several parts of the world, this study provides new, specific, and concerning insights about the crucial impact that the selection of moist tamping can have on design parameters. More realistic and rigorous laboratory testing procedures involving tailings remain a key requirement for engineering assessments of tailings behavior. A novel slurry-deposition setup is presented that allows underwater reconstitution of silts, sands, and their mixtures, yielding high-quality uniform specimens. Systematic uniformity checks, which are mandatory to avoid segregation of silty materials, are described. A detailed analysis of typical errors affecting initial void ratio evaluation is also presented to ensure that comparisons between different methods are done with the highest degree of confidence possible.
Journal ArticleDOI
TL;DR: The geotechnical behavior of cohesionless soils is governed by field conditions as mentioned in this paper , and the determination of shear strength under saturated and dried states was performed. But the results indicated that disintegrated samples possess identical soil behavior under both saturated and dry states, while the intact sample exhibited behavior similar to the disintegrated sample when saturated.
Abstract: The geotechnical behavior of cohesionless soils is governed by field conditions. Such soils exist in two distinct forms, namely: disintegrated, such as fresh sediments under no overburden and/or no suction, and intact, such as old deposits with overburden and/or suction. The main contribution of this research was the successful capture of field conditions in laboratory samples, and the determination of shear strength under saturated and dried states. Results indicated that disintegrated samples possess identical soil behavior under both saturation states. Shear stiffness and peak shear increased with increasing normal stress, and no clear failure peaks were observed, similar to loose soils. Both samples showed an initial contraction followed by dilation at low normal stresses and mostly contraction at high normal stresses. Apparent cohesion was non-existent, and the friction angle measured 44.5° in the saturated state and 48° in the dried state. The intact sample exhibited behavior similar to the disintegrated sample when saturated. Under the dried state, clear failure peaks followed by residual shear were observed, similar to dense soils. Soil response was primarily dilative at low normal stresses and largely contractive under high normal stresses. Apparent cohesion was zero, and friction angle was 42° in the saturated state and changed to 91 kPa and 36°, respectively, in the dried state. Finally, structural cohesion increased with normal stress, and the friction angle due to suction was between 0.05° and 0.02°.
References
More filters
Journal ArticleDOI
TL;DR: The methods and software engineering philosophy behind this new tool, ITK-SNAP, are described and the results of validation experiments performed in the context of an ongoing child autism neuroimaging study are provided, finding that SNAP is a highly reliable and efficient alternative to manual tracing.

6,669 citations

Journal ArticleDOI
19 Jun 2014-PeerJ
TL;DR: The advantages of open source to achieve the goals of the scikit-image library are highlighted, and several real-world image processing applications that use scik it-image are showcased.
Abstract: scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

3,903 citations

Book
01 Jan 1993
TL;DR: In this paper, the authors present an overview of the history of the field of geotechnical engineering with a focus on soil formation and its application in the area of chemical engineering.
Abstract: Preface. CHAPTER 1: INTRODUCTION. 1.1 Soil Behavior in Civil and Environmental Engineering. 1.2 Scope and Organization. 1.3 Getting Started. CHAPTER 2: SOIL FORMATION. 2.1 Introduction. 2.2 The Earth's Crust. 2.3 Geologic Cycle and Geological Time. 2.4 Rock and Mineral Stability. 2.5 Weathering. 2.6 Origin of Clay Minerals and Clay Genesis. 2.7 Soil Profiles and Their Development. 2.8 Sediment Erosion, Transport, and Deposition. 2.9 Postdepositional Changes in Sediments. 2.10 Concluding Comments. Questions and Problems. CHAPTER 3: SOIL MINERALOGY. 3.1 Importance of Soil Mineralogy in Geotechnical Engineering. 3.2 Atomic Structure. 3.3 Interatomic Bonding. 3.4 Secondary Bonds. 3.5 Crystals and Their Properties. 3.6 Crystal Notation. 3.7 Factors Controlling Crystal Structures. 3.8 Silicate Crystals. 3.9 Surfaces. 3.10 Gravel, Sand, and Silt Particles. 3.11 Soil Minerals and Materials Formed by Biogenic and Geochemical Processes. 3.12 Summary of Nonclay Mineral Characteristics. 3.13 Structural Units of the Layer Silicates. 3.14 Synthesis Pattern and Classification of the Clay Minerals. 3.15 Intersheet and Interlayer Bonding in the Clay Minerals. 3.16 The 1:1 Minerals. 3.17 Smectite Minerals. 3.18 Micalike Clay Minerals. 3.19 Other Clay Minerals. 3.20 Summary of Clay Mineral Characteristics. 3.21 Determination of Soil Composition. 3.22 X-ray Diffraction Analysis. 3.23 Other Methods for Compositional Analysis. 3.24 Quantitative Estimation of Soil Components. 3.25 Concluding Comments. Questions and Problems. CHAPTER 4: SOIL COMPOSITION AND ENGINEERING PROPERTIES. 4.1 Introduction. 4.2 Approaches to the Study of Composition and Property Interrelationships. 4.3 Engineering Properties of Granular Soils. 4.4 Dominating Influence of the Clay Phase. 4.5 Atterberg Limits. 4.6 Activity. 4.7 Influences of Exchangeable Cations and pH. 4.8 Engineering Properties of Clay Minerals. 4.9 Effects of Organic Matter. 4.10 Concluding Comments. Questions and Problems. CHAPTER 5: SOIL FABRIC AND ITS MEASUREMENT. 5.1 Introduction. 5.2 Definitions of Fabrics and Fabric Elements. 5.3 Single-Grain Fabrics. 5.4 Contact Force Characterization Using Photoelasticity. 5.5 Multigrain Fabrics. 5.6 Voids and Their Distribution. 5.7 Sample Acquisition and Preparation for Fabric Analysis. 5.8 Methods for Fabric Study. 5.9 Pore Size Distribution Analysis. 5.10 Indirect Methods for Fabric Characterization. 5.11 Concluding Comments. Questions and Problems. CHAPTER 6: SOIL-WATER-CHEMICAL INTERACTIONS. 6.1 Introduction. 6.2 Nature of Ice and Water. 6.3 Influence of Dissolved Ions on Water. 6.4 Mechanisms of Soil-Water Interaction. 6.5 Structure and Properties of Adsorbed Water. 6.6 Clay-Water-Electrolyte System. 6.7 Ion Distributions in Clay-Water Systems. 6.8 Elements of Double-Layer Theory. 6.9 Influences of System Variables on the Double Layer. 6.10 Limitations of the Gouy-Chapman Diffuse Double Layer Model. 6.11 Energy and Force of Repulsion. 6.12 Long-Range Attraction. 6.13 Net Energy of Interaction. 6.14 Cation Exchange-General Considerations. 6.15 Theories for Ion Exchange. 6.16 Soil-Inorganic Chemical Interactions. 6.17 Clay-Organic Chemical Interactions. 6.18 Concluding Comments. Questions and Problems. CHAPTER 7: EFFECTIVE, INTERGRANULAR, AND TOTAL STRESS. 7.1 Introduction. 7.2 Principle of Effective Stress. 7.3 Force Distributions in a Particulate System. 7.4 Interparticle Forces. 7.5 Intergranular Pressure. 7.6 Water Pressures and Potentials. 7.7 Water Pressure Equilibrium in Soil. 7.8 Measurement of Pore Pressures in Soils. 7.9 Effective and Intergranular Pressure. 7.10 Assessment of Terzaghi's Equation. 7.11 Water-Air Interactions in Soils. 7.12 Effective Stress in Unsaturated Soils. 7.13 Concluding Comments. Questions and Problems. CHAPTER 8: SOIL DEPOSITS-THEIR FORMATION, STRUCTURE, GEOTECHNICAL PROPERTIES, AND STABILITY. 8.1 Introduction. 8.2 Structure Development. 8.3 Residual Soils. 8.4 Surficial Residual Soils and Taxonomy. 8.5 Terrestrial Deposits. 8.6 Mixed Continental and Marine Deposits. 8.7 Marine Deposits. 8.8 Chemical and Biological Deposits. 8.9 Fabric, Structure, and Property Relationships: General Considerations. 8.10 Soil Fabric and Property Anisotropy. 8.11 Sand Fabric and Liquefaction. 8.12 Sensitivity and Its Causes. 8.13 Property Interrelationships in Sensitive Clays. 8.14 Dispersive Clays. 8.15 Slaking. 8.16 Collapsing Soils and Swelling Soils. 8.17 Hard Soils and Soft Rocks. 8.18 Concluding Comments. Questions and Problems. CHAPTER 9: CONDUCTION PHENOMENA. 9.1 Introduction. 9.2 Flow Laws and Interrelationships. 9.3 Hydraulic Conductivity. 9.4 Flows Through Unsaturated Soils. 9.5 Thermal Conductivity. 9.6 Electrical Conductivity. 9.7 Diffusion. 9.8 Typical Ranges of Flow Parameters. 9.9 Simultaneous Flows of Water, Current, and Salts Through Soil-Coupled Flows. 9.10 Quantification of Coupled Flows. 9.11 Simultaneous Flows of Water, Current, and Chemicals. 9.12 Electrokinetic Phenomena. 9.13 Transport Coefficients and the Importance of Coupled Flows. 9.14 Compatibility-Effects of Chemical Flows on Properties. 9.15 Electroosmosis. 9.16 Electroosmosis Efficiency. 9.17 Consolidation by Electroosmosis. 9.18 Electrochemical Effects. 9.19 Electrokinetic Remediation. 9.20 Self-Potentials. 9.21 Thermally Driven Moisture Flows. 9.22 Ground Freezing. 9.23 Concluding Comments. Questions and Problems. CHAPTER 10: VOLUME CHANGE BEHAVIOR. 10.1 Introduction. 10.2 General Volume Change Behavior of Soils. 10.3 Preconsolidation Pressure. 10.4 Factors Controlling Resistance to Volume Change. 10.5 Physical Interactions in Volume Change. 10.6 Fabric, Structure, and Volume Change. 10.7 Osmotic Pressure and Water Adsorption Influences on Compression and Swelling. 10.8 Influences of Mineralogical Detail in Soil Expansion. 10.9 Consolidation. 10.10 Secondary Compression. 10.11 In Situ Horizontal Stress (K 0 ). 10.12 Temperature-Volume Relationships. 10.13 Concluding Comments. Questions and Problems. CHAPTER 11 STRENGTH AND DEFORMATION BEHAVIOR. 11.1 Introduction. 11.2 General Characteristics of Strength and Deformation. 11.3 Fabric, Structure, and Strength. 11.4 Friction Between Solid Surfaces. 11.5 Frictional Behavior of Minerals. 11.6 Physical Interactions Among Particles. 11.7 Critical State: A Useful Reference Condition. 11.8 Strength Parameters for Sands. 11.9 Strength Parameters for Clays. 11.10 Behavior After Peak and Strain Localization. 11.11 Residual State and Residual Strength. 11.12 Intermediate Stress Effects and Anisotropy. 11.13 Resistance to Cyclic Loading and Liquefaction. 11.14 Strength of Mixed Soils. 11.15 Cohesion. 11.16 Fracturing of Soils. 11.17 Deformation Characteristics. 11.18 Linear Elastic Stiffness. 11.19 Transition from Elastic to Plastic States. 11.20 Plastic Deformation. 11.21 Temperature Effects. 11.22 Concluding Comments. Questions and Problems. CHAPTER 12: TIME EFFECTS ON STRENGTH AND DEFORMATION. 12.1 Introduction. 12.2 General Characteristics. 12.3 Time-Dependent Deformation-Structure Interaction. 12.4 Soil Deformation as a Rate Process. 12.5 Bonding, Effective Stresses, and Strength. 12.6 Shearing Resistance as a Rate Process. 12.7 Creep and Stress Relaxation. 12.8 Rate Effects on Stress-Strain Relationships. 12.9 Modeling of Stress-Strain-Time Behavior. 12.10 Creep Rupture. 12.11 Sand Aging Effects and Their Significance. 12.12 Mechanical Processes of Aging. 12.13 Chemical Processes of Aging. 12.14 Concluding Comments. Questions and Problems. List of Symbols. References. Index.

2,942 citations

Book
20 Mar 2009
TL;DR: This book is part of a brand new six-part series of Python documentation books, and for each copy sold $1 will be donated to the Python Software Foundation by the publisher.
Abstract: PYTHON 3 Reference Manual (Python Documentation MANUAL Part 2).Python is an easy to learn object-oriented programming language, which combines power with clear syntax. It has modules, classes, exceptions, very high level data types, and dynamic typing. Python is free software. It can be used with GNU (GNU/Linux), Unix, Microsoft Windows and many other systems.This is a printed softcover copy of the official Python documentation from the latest Python 3.0 distribution. For each copy sold $1 will be donated to the Python Software Foundation by the publisher.This book is part of a brand new six-part series of Python documentation books. Searching for "Python Documentation Manual" will show all six available books.ABOUT THE AUTHOR: Guido van Rossum, is the inventor of Python. Fred L. Drake, Jr. is the official editor of the Python documentation.

1,246 citations