scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities

01 Feb 1955-Vol. 6, Iss: 2, pp 170-176
About: The article was published on 1955-02-01 and is currently open access. It has received 552 citations till now. The article focuses on the topics: Convex set & Subderivative.
Citations
More filters
OtherDOI
29 Sep 2014
TL;DR: In this article, the authors present a concise review of developments on various continuous multivariate distributions and present some basic definitions and notations, and present several important continuous multi-dimensional distributions and their significant properties and characteristics.
Abstract: In this article, we present a concise review of developments on various continuous multivariate distributions. We first present some basic definitions and notations. Then, we present several important continuous multivariate distributions and list their significant properties and characteristics. Keywords: generating function; moments; conditional distribution; truncated distribution; regression; bivariate normal; multivariate normal; multivariate exponential; multivariate gamma; dirichlet; inverted dirichlet; liouville; multivariate logistic; multivariate pareto; multivariate extreme value; multivariate t; wishart translated systems; multivariate exponential families

1,106 citations

Journal ArticleDOI
TL;DR: In this article, the authors proved the asymptotic minimax character of the sample distribution function (d.f.) for estimating an unknown d.f. in the sense that the maximum deviation between the estimator and the true D.f is not a constant over the dimension of the distribution function.
Abstract: This paper is devoted, in the main, to proving the asymptotic minimax character of the sample distribution function (d.f.) for estimating an unknown d.f. in $\mathscr{F}$ or $\mathscr{F}_c$ (defined in Section 1) for a wide variety of weight functions. Section 1 contains definitions and a discussion of measurability considerations. Lemma 2 of Section 2 is an essential tool in our proofs and seems to be of interest per se; for example, it implies the convergence of the moment generating function of $G_n$ to that of $G$ (definitions in (2.1)). In Section 3 the asymptotic minimax character is proved for a fundamental class of weight functions which are functions of the maximum deviation between estimating and true d.f. In Section 4 a device (of more general applicability in decision theory) is employed which yields the asymptotic minimax result for a wide class of weight functions of this character as a consequence of the results of Section 3 for weight functions of the fundamental class. In Section 5 the asymptotic minimax character is proved for a class of integrated weight functions. A more general class of weight functions for which the asymptotic minimax character holds is discussed in Section 6. This includes weight functions for which the risk function of the sample d.f. is not a constant over $\mathscr{F}_c.$ Most weight functions of practical interest are included in the considerations of Sections 3 to 6. Section 6 also includes a discussion of multinomial estimation problems for which the asymptotic minimax character of the classical estimator is contained in our results. Finally, Section 7 includes a general discussion of minimization of symmetric convex or monotone functionals of symmetric random elements, with special consideration of the "tied-down" Wiener process, and with a heuristic proof of the results of Sections 3, 4, 5, and much of Section 6.

1,000 citations

Journal ArticleDOI
TL;DR: In this article, the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, and some applications, is discussed; see Section 5.1.1 for a survey.
Abstract: In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of Rn, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, and some applications.

921 citations


Cites methods from "The integral of a symmetric unimoda..."

  • ...The proof of Anderson’s theorem hinges on a property of a function gK,L on Rn associated with convex bodies K and L in Rn, defined by gK,L(x) = V (K ∩ (L + x)) ....

    [...]

  • ...Anderson’s theorem has many applications in probability and statistics, where, for example, it can be applied to show that certain statistical tests are unbiased....

    [...]

  • ...In 1955, Anderson [2] used the Brunn-Minkowski inequality in his work on multivariate unimodality....

    [...]

  • ...Applications to probability and statistics In 1955, Anderson [2] used the Brunn-Minkowski inequality in his work on multivariate unimodality....

    [...]

  • ...Such applications are treated in Section 11, along with related consequences of Anderson’s theorem on multivariate unimodality, the proof of which employs the Brunn-Minkowski inequality....

    [...]

Book
01 Jan 1999
TL;DR: In this paper, Donsker's theorem, metric entropy and inequalities, and the universal and uniform central limit theorems are discussed. But they do not consider the two-sample case, the bootstrap case, and confidence sets.
Abstract: Preface 1. Introduction: Donsker's theorem, metric entropy and inequalities 2. Gaussian measures and processes sample continuity 3. Foundations of uniform central limit theorems: Donsker classes 4. Vapnik-Cervonenkis combinatorics 5. Measurability 6. Limit theorems for Vapnik-Cervonenkis and related classes 7. Metric entropy, with inclusion and bracketing 8. Approximation of functions and sets 9. Sums in general Banach spaces and invariance principles 10. Universal and uniform central limit theorems 11. The two-sample case, the bootstrap, and confidence sets 12. Classes of sets or functions too large for central limit theorems Appendices Subject index Author index Index of notation.

697 citations

Journal ArticleDOI
TL;DR: The Laplace type estimators (LTEs) as mentioned in this paper are a family of estimators that include means and quantiles of quasi-posterior distributions defined as transformations of general (nonlikelihood-based) statistical criterion functions, such as those in GMM, nonlinear IV, empirical likelihood, and minimum distance methods.

584 citations

References
More filters
Book
01 Jan 1953

10,512 citations

Journal ArticleDOI
TL;DR: In this article, a general method for calculating the limiting distributions of these criteria is developed by reducing them to corresponding problems in stochastic processes, which in turn lead to more or less classical eigenvalue and boundary value problems for special classes of differential equations.
Abstract: The statistical problem treated is that of testing the hypothesis that $n$ independent, identically distributed random variables have a specified continuous distribution function $F(x)$. If $F_n(x)$ is the empirical cumulative distribution function and $\psi(t)$ is some nonnegative weight function $(0 \leqq t \leqq 1)$, we consider $n^{\frac{1}{2}} \sup_{-\infty

3,082 citations


"The integral of a symmetric unimoda..." refers background in this paper

  • ...In Theorem 1 the equality in (1) holds for k<l if and only if, for every u, (E+y)r\Ku=Er\Ku-\-y....

    [...]

  • ...It will be noticed that we obtain strict inequality in (1) if and only if for at least one u, H(u)>H*(u) (because H(u) is continuous on the left)....

    [...]

BookDOI
01 Jan 1934
TL;DR: In this article, Minkowski et al. den engen Zusammenhang dieser Begriffbildungen und Satze mit der Frage nach der bestimmung konvexer Flachen durch ihre GAusssche Krtim mung aufgedeckt und tiefliegende diesbeztigliche Satze bewiesen.
Abstract: Konvexe Figuren haben von jeher in der Geometrie eine bedeutende Rolle gespielt. Die durch ihre KonvexiUitseigenschaft allein charakteri sierten Gebilde hat aber erst BRUNN zum Gegenstand umfassender geometrischer Untersuchungen gemacht. In zwei Arbeiten "Ovale und EifHichen" und "Kurven ohne Wendepunkte" aus den Jahren 1887 und 1889 (vgl. Literaturverzeichnis BRUNN [1J, [2J) hat er neben zahl reichen Satzen der verschiedensten Art tiber konvexe Bereiche und Korper einen Satz tiber die Flacheninhalte von parallelen ebenen Schnitten eines konvexen K6rpers bewiesen, der sich in der Folge als fundamental herausgestellt hat. Die Bedeutung dieses Satzes hervor gehoben zu haben, ist das Verdienst von MINKOWSKI. In mehreren Arbeiten, insbesondere in "Volumeri. und Oberflache" (1903) und in der groBztigig angelegten, unvollendet geblieben n Arbeit "Zur Theorie der konvexen K6rper" (Literaturverzeichnis [3], [4J) hat er durch Ein fUhrung von grundlegenden Begriffen wie Stutzfunktion, gemischtes VolulIl, en usw. die dem Problemkreis angemessenen formalen Hilfsmittel geschaffen und vor allem den Weg zu vielseitigen Anwendungen, speziell auf das isoperimetrische (isepiphane) und andere Extremalprobleme fUr konvexe Bereiche und K6rper er6ffnet. Weiterhin hat MINKOWSKI den engen Zusammenhang dieser Begriffsbildungen und Satze mit der Frage nach der Bestimmung konvexer Flachen durch ihre GAusssche Krtim mung aufgedeckt und tiefliegende diesbeztigliche Satze bewiesen.

927 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extended the Cramer-Smirnov and von Mises test to the parametric case, a suggestion of Cramer [1], see also [2].
Abstract: The "goodness of fit" problem, consisting of comparing the empirical and hypothetical cumulative distribution functions (cdf's), is treated here for the case when an auxiliary parameter is to be estimated. This extends the Cramer-Smirnov and von Mises test to the parametric case, a suggestion of Cramer [1], see also [2]. The characteristic function of the limiting distribution of the test function is found by consideration of a Guassian stochastic process.

140 citations


"The integral of a symmetric unimoda..." refers background in this paper

  • ...f ud[H*(u) - H(u)} = b[H*(b) - H(b)] - a[H*(a) - H(a)} (3) " + f [(H(u) - H*(u)]du....

    [...]

  • ...J a Since/(x) has a finite integral over E, bH(b)—>0 as b—>oo and hence also bH*(b)—>0 as b—*<x>; therefore the first term on the right in (3) can be made arbitrarily small in absolute value....

    [...]