scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Internet of Things for Health Care: A Comprehensive Survey

TL;DR: An intelligent collaborative security model to minimize security risk is proposed; how different innovations such as big data, ambient intelligence, and wearables can be leveraged in a health care context is discussed; and various IoT and eHealth policies and regulations are addressed to determine how they can facilitate economies and societies in terms of sustainable development.
Abstract: The Internet of Things (IoT) makes smart objects the ultimate building blocks in the development of cyber-physical smart pervasive frameworks. The IoT has a variety of application domains, including health care. The IoT revolution is redesigning modern health care with promising technological, economic, and social prospects. This paper surveys advances in IoT-based health care technologies and reviews the state-of-the-art network architectures/platforms, applications, and industrial trends in IoT-based health care solutions. In addition, this paper analyzes distinct IoT security and privacy features, including security requirements, threat models, and attack taxonomies from the health care perspective. Further, this paper proposes an intelligent collaborative security model to minimize security risk; discusses how different innovations such as big data, ambient intelligence, and wearables can be leveraged in a health care context; addresses various IoT and eHealth policies and regulations across the world to determine how they can facilitate economies and societies in terms of sustainable development; and provides some avenues for future research on IoT-based health care based on a set of open issues and challenges.
Citations
More filters
Journal ArticleDOI
TL;DR: The paper presents a brief overview of smart cities, followed by the features and characteristics, generic architecture, composition, and real-world implementations ofSmart cities, and some challenges and opportunities identified through extensive literature survey on smart cities.

925 citations

Journal ArticleDOI
TL;DR: This study aims to serve as a useful manual of existing security threats and vulnerabilities of the IoT heterogeneous environment and proposes possible solutions for improving the IoT security architecture.

889 citations


Cites background from "The Internet of Things for Health C..."

  • ...A broad range of information and services are provided by the Internet, such as the connection between hypertext files and the World Wide Web application, e-mail, communication, and distributed systems for document sharing (Islam et al., 2015)....

    [...]

Journal ArticleDOI
TL;DR: The IoT ecosystem is presented and how the combination of IoT and DA is enabling smart agriculture, and future trends and opportunities are provided which are categorized into technological innovations, application scenarios, business, and marketability.
Abstract: The surge in global population is compelling a shift toward smart agriculture practices. This coupled with the diminishing natural resources, limited availability of arable land, increase in unpredictable weather conditions makes food security a major concern for most countries. As a result, the use of Internet of Things (IoT) and data analytics (DA) are employed to enhance the operational efficiency and productivity in the agriculture sector. There is a paradigm shift from use of wireless sensor network (WSN) as a major driver of smart agriculture to the use of IoT and DA. The IoT integrates several existing technologies, such as WSN, radio frequency identification, cloud computing, middleware systems, and end-user applications. In this paper, several benefits and challenges of IoT have been identified. We present the IoT ecosystem and how the combination of IoT and DA is enabling smart agriculture. Furthermore, we provide future trends and opportunities which are categorized into technological innovations, application scenarios, business, and marketability.

814 citations


Cites background from "The Internet of Things for Health C..."

  • ...THE INTERNET of Things (IoT) has found its application in several areas, such as connected industry, smartcity [1], [2], smart-home [3] smart-energy, connected car [4], smart-agriculture [5], connected building and campus [6], health care [7], logistics [8], among other domains....

    [...]

Journal ArticleDOI
TL;DR: A standard model for application in future IoT healthcare systems is proposed, and the state-of-the-art research relating to each area of the model is presented, evaluating their strengths, weaknesses, and overall suitability for a wearable IoT healthcare system.
Abstract: Internet of Things (IoT) technology has attracted much attention in recent years for its potential to alleviate the strain on healthcare systems caused by an aging population and a rise in chronic illness. Standardization is a key issue limiting progress in this area, and thus this paper proposes a standard model for application in future IoT healthcare systems. This survey paper then presents the state-of-the-art research relating to each area of the model, evaluating their strengths, weaknesses, and overall suitability for a wearable IoT healthcare system. Challenges that healthcare IoT faces including security, privacy, wearability, and low-power operation are presented, and recommendations are made for future research directions.

735 citations


Cites background from "The Internet of Things for Health C..."

  • ...An extensive survey is presented in [10], with focus placed on commercially available solutions, possible applications, and remaining problems....

    [...]

  • ...work of devices interacting with each other via machine to machine (M2M) communications, enabling collection and exchange of data [7], [10], [11]....

    [...]

Journal ArticleDOI
TL;DR: It is proposed that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other, and needs a multi-layer architecture.

725 citations


Cites background from "The Internet of Things for Health C..."

  • ...• Physical sensor: generally any medical device with a wired/wireless interface can be used in eHealth ecosystem to track patients’ physical wellness, and digitally monitor their health [49]....

    [...]

  • ...Security and privacy of IoT eHealth spans the whole lifecycle of the system starting from specification generation, to implementation and deployment [131], [132], [133], [134], [49], [135], [136], [137], [138]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations


"The Internet of Things for Health C..." refers background in this paper

  • ...The interested reader is referred to [172] and [173] for a better understanding of layer-wise issues....

    [...]

Journal ArticleDOI
TL;DR: The authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity for smart objects, describing activity-, policy-, and process-aware smart objects and demonstrating how the respective architectural abstractions support increasingly complex application.
Abstract: The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application.

1,459 citations

Journal ArticleDOI
TL;DR: This paper provides several state of the art examples together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the benefits and challenges of these systems.

1,331 citations


"The Internet of Things for Health C..." refers background in this paper

  • ...It should be noted that R&D activities in the field of healthcare services based on the wireless sensor network (WSN) [8], [9] can be considered as initial IoT-based healthcare research efforts....

    [...]

Journal ArticleDOI
TL;DR: Smartphone-based healthcare technologies as discussed in academic literature according to their functionalities are classified, and the disease diagnosis, drug reference, and medical calculator applications were reported as most useful by healthcare professionals and medical or nursing students.
Abstract: Advanced mobile communications and portable computation are now combined in handheld devices called “smartphones”, which are also capable of running third-party software. The number of smartphone users is growing rapidly, including among healthcare professionals. The purpose of this study was to classify smartphone-based healthcare technologies as discussed in academic literature according to their functionalities, and summarize articles in each category. In April 2011, MEDLINE was searched to identify articles that discussed the design, development, evaluation, or use of smartphone-based software for healthcare professionals, medical or nursing students, or patients. A total of 55 articles discussing 83 applications were selected for this study from 2,894 articles initially obtained from the MEDLINE searches. A total of 83 applications were documented: 57 applications for healthcare professionals focusing on disease diagnosis (21), drug reference (6), medical calculators (8), literature search (6), clinical communication (3), Hospital Information System (HIS) client applications (4), medical training (2) and general healthcare applications (7); 11 applications for medical or nursing students focusing on medical education; and 15 applications for patients focusing on disease management with chronic illness (6), ENT-related (4), fall-related (3), and two other conditions (2). The disease diagnosis, drug reference, and medical calculator applications were reported as most useful by healthcare professionals and medical or nursing students. Many medical applications for smartphones have been developed and widely used by health professionals and patients. The use of smartphones is getting more attention in healthcare day by day. Medical applications make smartphones useful tools in the practice of evidence-based medicine at the point of care, in addition to their use in mobile clinical communication. Also, smartphones can play a very important role in patient education, disease self-management, and remote monitoring of patients.

1,007 citations


"The Internet of Things for Health C..." refers background in this paper

  • ...An extensive review of healthcare apps for smartphones is systematically provided in [95], including a discussion on apps for patients and general healthcare apps as well as on medical education, training, information search apps, and others (collectively referred to as auxiliary apps)....

    [...]

Journal ArticleDOI
TL;DR: This article outlines the constraints, security requirements, and attacks with their corresponding countermeasures in WSNs, and presents a holistic view of security issues, classified into five categories: cryptography, key management, secure routing, secure data aggregation, and intrusion detection.
Abstract: Wireless Sensor Networks (WSNs) are used in many applications in military, ecological, and health-related areas These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building Security is therefore important in WSNs However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the use of insecure wireless communication channels These constraints make security in WSNs a challenge In this article we present a survey of security issues in WSNs First we outline the constraints, security requirements, and attacks with their corresponding countermeasures in WSNs We then present a holistic view of security issues These issues are classified into five categories: cryptography, key management, secure routing, secure data aggregation, and intrusion detection Along the way we highlight the advantages and disadvantages of various WSN security protocols and further compare and evaluate these protocols based on each of these five categories We also point out the open research issues in each subarea and conclude with possible future research directions on security in WSNs

929 citations


"The Internet of Things for Health C..." refers background in this paper

  • ...Such attacks include the following [168], [169]: Interruption: An adversary launches denial-ofservice (DoS) attacks to cause communications links to be lost or unavailable....

    [...]