scispace - formally typeset
Journal ArticleDOI: 10.1016/J.PNPBP.2020.110091

The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways.

02 Mar 2021-Progress in Neuro-psychopharmacology & Biological Psychiatry (Elsevier)-Vol. 106, pp 110091
Abstract: Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impairments in social and cognitive activities, stereotypical and repetitive behaviors and restricted areas of interest. A remarkable proportion of ASD patients represent immune dysregulation as well as gastrointestinal complications. Hence, a novel concept has recently emerged, addressing the possible intercommunication between the brain, the immune system, the gut and its commensals. Here, we provide an overview of how gut microbes and their metabolites are associated with neurobehavioral features of ASD through various immunologic mechanisms. Moreover, we discuss the potential therapeutic options that could modify these features.

... read more

Topics: Autism (53%), Gut–brain axis (53%), Immune dysregulation (51%)
Citations
  More

7 results found


Open accessJournal ArticleDOI: 10.1111/BPA.12908
Omar Mossad1, Daniel Erny1Institutions (1)
01 Nov 2020-Brain Pathology
Abstract: The innate immune system in the central nervous system (CNS) is mainly represented by specialized tissue-resident macrophages, called microglia. In the past years, various species-, host- and tissue-specific as well as environmental factors were recognized that essentially affect microglial properties and functions in the healthy and diseased brain. Host microbiota are mostly residing in the gut and contribute to microglial activation states, for example, via short-chain fatty acids (SCFAs) or aryl hydrocarbon receptor (AhR) ligands. Thereby, the gut microorganisms are deemed to influence numerous CNS diseases mediated by microglia. In this review, we summarize recent findings of the interaction between the host microbiota and the CNS in health and disease, where we specifically highlight the resident gut microbiota as a crucial environmental factor for microglial function as what we coin "the microbiota-microglia axis."

... read more

Topics: Gut–brain axis (58%), Gut flora (55%), Innate immune system (50%)

9 Citations


Journal ArticleDOI: 10.1016/J.PNPBP.2020.110130
Abstract: Cognitive impairment has been consistently found to be a core feature of serious mental illnesses such as schizophrenia and major mood disorders (major depression and bipolar disorder). In recent years, a great effort has been made in elucidating the biological causes of cognitive deficits and the search for new biomarkers of cognition. Microbiome and gut-brain axis (MGB) hormones have been postulated to be potential biomarkers of cognition in serious mental illnesses. The main aim of this review was to synthesize current evidence on the association of microbiome and gut-brain hormones on cognitive processes in schizophrenia and major mood disorders and the association of MGB hormones with stress and the immune system. Our review underscores the role of the MGB axis on cognitive aspects of serious mental illnesses with the potential use of agents targeting the gut microbiota as cognitive enhancers. However, the current evidence for clinical trials focused on the MGB axis as cognitive enhancers in these clinical populations is scarce. Future clinical trials using probiotics, prebiotics, antibiotics, or faecal microbiota transplantation need to consider potential mechanistic pathways such as the HPA axis, the immune system, or gut-brain axis hormones involved in appetite control and energy homeostasis.

... read more

Topics: Gut–brain axis (54%), Mood disorders (53%), Microbiome (51%) ... read more

8 Citations


Open accessJournal ArticleDOI: 10.3390/IJMS22062811
Yuyoung Joo1, David R. Benavides1Institutions (1)
Abstract: Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.

... read more

Topics: MRNA transport (55%), Synaptic plasticity (55%), Autism (54%) ... read more

3 Citations


Open accessJournal ArticleDOI: 10.3390/LIFE11070715
19 Jul 2021-Life
Abstract: The gut microbiota is emerging as an important player in neurodevelopment and aging as well as in brain diseases including stroke, Alzheimer’s disease, and Parkinson’s disease. The complex interplay between gut microbiota and the brain, and vice versa, has recently become not only the focus of neuroscience, but also the starting point for research regarding many diseases such as inflammatory bowel diseases (IBD). The bi-directional interaction between gut microbiota and the brain is not completely understood. The aim of this review is to sum up the evidencesconcerningthe role of the gut–brain microbiota axis in ischemic stroke and to highlight the more recent evidences about the potential role of the gut–brain microbiota axis in the interaction between inflammatory bowel disease and ischemic stroke.

... read more

Topics: Gut–brain axis (59%), Gut flora (56%), Inflammatory bowel disease (50%)

Open accessJournal ArticleDOI: 10.3389/FIMMU.2021.742449
Manqiu Ding1, Yue Lang1, Hang Shu1, Jie Shao1  +1 moreInstitutions (1)
Abstract: The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.

... read more

Topics: Gut–brain axis (58%), Gut flora (57%), Epilepsy (56%) ... read more

References
  More

149 results found


Journal ArticleDOI: 10.1038/NN1997
Abstract: Microglial cells constitute the resident macrophage population of the CNS. Recent in vivo studies have shown that microglia carry out active tissue scanning, which challenges the traditional notion of 'resting' microglia in the normal brain. Transformation of microglia to reactive states in response to pathology has been known for decades as microglial activation, but seems to be more diverse and dynamic than ever anticipated—in both transcriptional and nontranscriptional features and functional consequences. This may help to explain why engagement of microglia can be either neuroprotective or neurotoxic, resulting in containment or aggravation of disease progression. Moreover, little is known about the heterogeneity of microglial responses in different pathologic contexts that results from regional adaptations or from the progression of a disease. In this review, we focus on several key observations that illustrate the multi-faceted activities of microglia in the normal and pathologic brain.

... read more

Topics: Microglia (52%)

2,925 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.1241165
02 Aug 2013-Science
Abstract: Regulatory T cells (T regs ) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate T reg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic T regs . We determined that short-chain fatty acids, gut microbiota–derived bacterial fermentation products, regulate the size and function of the colonic T reg pool and protect against colitis in a Ffar2 -dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.

... read more

Topics: FOXP3 (55%), Immune system (52%)

2,843 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.1223490
08 Jun 2012-Science
Abstract: The large numbers of microorganisms that inhabit mammalian body surfaces have a highly coevolved relationship with the immune system. Although many of these microbes carry out functions that are critical for host physiology, they nevertheless pose the threat of breach with ensuing pathologies. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, thus ensuring that the mutualistic nature of the host-microbial relationship is maintained. At the same time, resident bacteria profoundly shape mammalian immunity. Here, we review advances in our understanding of the interactions between resident microbes and the immune system and the implications of these findings for human health.

... read more

2,804 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.1198469
Koji Atarashi1, Takeshi Tanoue1, Tatsuichiro Shima, Akemi Imaoka  +14 moreInstitutions (7)
21 Jan 2011-Science
Abstract: CD4+ T regulatory cells (Tregs), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, Tregs were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted Treg cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor–β and affected Foxp3+ Treg number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.

... read more

Topics: FOXP3 (55%), Clostridium (54%), Intestinal mucosa (54%) ... read more

2,664 Citations


Journal ArticleDOI: 10.1152/PHYSREV.00045.2009
Abstract: Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.

... read more

Topics: Gut flora (58%), Intestinal mucosa (55%), Gut–brain axis (54%)

2,537 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20216
20201