scispace - formally typeset
Search or ask a question

The Land Use Model Intercomparison Project (LUMIP) Contribution to CMIP6: Rationale and Experimental Design

TL;DR: The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions.
Abstract: Abstract. Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past–future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-management strategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land–atmosphere coupling strength, and the extent to which impacts of enhanced CO2 concentrations on plant photosynthesis are modulated by past and future land use. LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.
Citations
More filters
Journal Article
TL;DR: The scenario matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different adaptation and mitigation strategies and the possible trade-offs and synergies.
Abstract: This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different adaptation and mitigation strategies (in terms of their costs, risks, and other consequences) and the possible trade-offs and synergies. The two main axes of the matrix are: (1) the level of radiative forcing of the climate system (as characterized by the representative concentration pathways), and (2) a set of alternative plausible trajectories of future global development (described as shared socio-economic pathways). The matrix can be used to guide scenario development at different scales. It can also be used as a heuristic tool for classifying new and existing scenarios for assessment. Key elements of the architecture, in particular the shared socio-economic pathways and shared policy assumptions (devices for incorporating explicit mitigation and adaptation policies), are elaborated in other papers in this special issue.

402 citations

01 Apr 2013
TL;DR: The Global Land-Atmosphere Climate Experiment-Coupled Model Intercomparison Project phase 5 (GLACE-CMIP5) is a multimodel experiment investigating the impact of soil moisture-climate feedbacks in CMIP5 projections as mentioned in this paper.
Abstract: The Global Land-Atmosphere Climate Experiment-Coupled Model Intercomparison Project phase 5 (GLACE-CMIP5) is a multimodel experiment investigating the impact of soil moisture-climate feedbacks in CMIP5 projections. We present here first GLACE-CMIP5 results based on five Earth System Models, focusing on impacts of projected changes in regional soil moisture dryness (mostly increases) on late 21st century climate. Projected soil moisture changes substantially impact climate in several regions in both boreal and austral summer. Strong and consistent effects are found on temperature, especially for extremes (about 1-1.5 K for mean temperature and 2-2.5 K for extreme daytime temperature). In the Northern Hemisphere, effects on mean and heavy precipitation are also found in most models, but the results are less consistent than for temperature. A direct scaling between soil moisture-induced changes in evaporative cooling and resulting changes in temperature mean and extremes is found in the simulations. In the Mediterranean region, the projected soil moisture changes affect about 25% of the projected changes in extreme temperature. Key Points GLACE-CMIP5 quantifies soil moisture feedbacks in climate projections Impacts on late 21st century temperature and precipitation mean and extremes Effects of about 25% for temperature extremes in Mediterranean region © 2013 The Authors. Geophysical Research Letters published by Wiley on behalf of the American Geophysical Union.

211 citations

Posted Content
TL;DR: In this article, the authors constructed a model to analyze the interactions between land-use change and atmospheric CO2 during the recent past and for the future, and they showed that when croplands replace forests, the turnover time of excess carbon in the biosphere decreases, and hence the sink capacity of terrestrial ecosystems decreases.
Abstract: We constructed a model to analyze the interactions between land-use change and atmospheric CO2 during the recent past and for the future. The primary impact of the conversion of forested lands to cultivated lands is to increase atmospheric CO2, via losses of biomass and soil carbon to the atmosphere. This increase is likely to continue in the next decades, but its magnitude can vary according to each land-use scenario. We show that this first-order effect is further amplified by the correlated diminution of terrestrial sinks, because when croplands replace forests, the turnover time of excess carbon in the biosphere decreases, and hence the sink capacity of terrestrial ecosystems decreases. This effect acts to further increase by up to 100 ppm the CO2 level reached by 2100, and it is ofthe same order of magnitude, although smaller, than climate-carbon feedbacks. Uncertainties on the magnitude of this land-use induced effect are large, because of uncertainties in the sink role of terrestrial ecosystems in the future and because of uncertainties inherent to the modeling of land-use induced carbon emissions. Such an extra rise in atmospheric CO2 is however partially offset by the ocean reservoir and by sinks operating over undisturbed, pristine ecosystems, suggesting that conserving pristine forests with long turnover times might be efficient in mitigating the greenhouse effect

98 citations

01 Apr 2015
TL;DR: In this article, a spatially explicit bookkeeping model BLUE (bookkeeping of land use emissions) is applied to quantify LULCC fluxes and attribute them to land use activities and countries by a range of different accounting methods.
Abstract: Accounting for carbon fluxes from land use and land cover change (LULCC) generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly developed and spatially explicit bookkeeping model BLUE (bookkeeping of land use emissions), we quantify LULCC fluxes and attribute them to land use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like “commitment” accounting period, using land use emissions of 2008–2012 as an example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions.

90 citations

01 Dec 2010
TL;DR: It is shown in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns, and that regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation.
Abstract: We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

42 citations

References
More filters
Journal ArticleDOI
15 Nov 2013-Science
TL;DR: Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally, and boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms.
Abstract: Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

7,890 citations


"The Land Use Model Intercomparison ..." refers methods in this paper

  • ...Model Dev., 9, 2973–2998, 2016 extent, constrains forest loss between the years 2000 and 2012 with Landsat-based forest loss data from Hansen et al. (2013), and uses a new historical wood harvest reconstruction based on updated FAO data, new HYDE population data, and other sources....

    [...]

Journal ArticleDOI
20 Oct 2011-Nature
TL;DR: It is shown that tremendous progress could be made by halting agricultural expansion, closing ‘yield gaps’ on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste, which could double food production while greatly reducing the environmental impacts of agriculture.
Abstract: Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.

5,954 citations


"The Land Use Model Intercomparison ..." refers background in this paper

  • ...Expansion of active management into relatively untouched regions could satisfy a portion of the growing demand for food and fiber 90 but intensification is likely to play a stronger role in strategies for global sustainability (Foley et al. 2011; Reid et al. 2010)....

    [...]

  • ...Expansion of active management into relatively untouched regions could satisfy a portion of the growing demand for food and fiber, but intensification is likely to play a stronger role in strategies for global sustainability (Foley et al., 2011; Reid et al., 2010)....

    [...]

Journal ArticleDOI
13 Jun 2008-Science
TL;DR: Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Abstract: The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

4,541 citations


"The Land Use Model Intercomparison ..." refers background in this paper

  • ...…tending to agree that deforestation has led and will lead to cooling in high latitudes and warming in the tropics, with more uncertain changes in the mid-latitudes (e.g., Bonan, 2008; Davin and de Noblet-Ducoudré, 2010; Lee et al., 2011; Li et al., 2016; Pielke et al., 2011; Swann et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21-CMIP6-Endorsed MIPs.
Abstract: . By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.

4,192 citations

Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations


"The Land Use Model Intercomparison ..." refers background in this paper

  • ...In addition, the regionally concentrated nature of biophysical land-use forcing limits the insight gained from quantifying it in terms of a global mean metric (or more strictly the effective radiative forcing, ERF; Davin et al., 2007; Jones et al., 2013a; Myhre et al., 2013)....

    [...]

  • ...In addition, the regionally concentrated nature of biophysical land-use forcing limits the insight gained from quantifying it in terms of a global mean metric (or 565 more strictly the Effective Radiative Forcing, ERF; Davin et al. 2007; Jones et al. 2013a; Myhre et al. 2013)....

    [...]

Related Papers (5)