Book•
The Linear Complementarity Problem
18 Feb 1992-
TL;DR: In this article, the authors present an overview of existing and multiplicity of degree theory and propose pivoting methods and iterative methods for degree analysis, including sensitivity and stability analysis.
Abstract: Introduction. Background. Existence and Multiplicity. Pivoting Methods. Iterative Methods. Geometry and Degree Theory. Sensitivity and Stability Analysis. Chapter Notes and References. Bibliography. Index.
...read more
Citations
More filters
Book•
01 Jan 1994
TL;DR: In this paper, the authors present a brief history of LMIs in control theory and discuss some of the standard problems involved in LMIs, such as linear matrix inequalities, linear differential inequalities, and matrix problems with analytic solutions.
Abstract: Preface 1. Introduction Overview A Brief History of LMIs in Control Theory Notes on the Style of the Book Origin of the Book 2. Some Standard Problems Involving LMIs. Linear Matrix Inequalities Some Standard Problems Ellipsoid Algorithm Interior-Point Methods Strict and Nonstrict LMIs Miscellaneous Results on Matrix Inequalities Some LMI Problems with Analytic Solutions 3. Some Matrix Problems. Minimizing Condition Number by Scaling Minimizing Condition Number of a Positive-Definite Matrix Minimizing Norm by Scaling Rescaling a Matrix Positive-Definite Matrix Completion Problems Quadratic Approximation of a Polytopic Norm Ellipsoidal Approximation 4. Linear Differential Inclusions. Differential Inclusions Some Specific LDIs Nonlinear System Analysis via LDIs 5. Analysis of LDIs: State Properties. Quadratic Stability Invariant Ellipsoids 6. Analysis of LDIs: Input/Output Properties. Input-to-State Properties State-to-Output Properties Input-to-Output Properties 7. State-Feedback Synthesis for LDIs. Static State-Feedback Controllers State Properties Input-to-State Properties State-to-Output Properties Input-to-Output Properties Observer-Based Controllers for Nonlinear Systems 8. Lure and Multiplier Methods. Analysis of Lure Systems Integral Quadratic Constraints Multipliers for Systems with Unknown Parameters 9. Systems with Multiplicative Noise. Analysis of Systems with Multiplicative Noise State-Feedback Synthesis 10. Miscellaneous Problems. Optimization over an Affine Family of Linear Systems Analysis of Systems with LTI Perturbations Positive Orthant Stabilizability Linear Systems with Delays Interpolation Problems The Inverse Problem of Optimal Control System Realization Problems Multi-Criterion LQG Nonconvex Multi-Criterion Quadratic Problems Notation List of Acronyms Bibliography Index.
10,744 citations
TL;DR: This paper proposes gradient projection algorithms for the bound-constrained quadratic programming (BCQP) formulation of these problems and test variants of this approach that select the line search parameters in different ways, including techniques based on the Barzilai-Borwein method.
Abstract: Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ) error term combined with a sparseness-inducing regularization term. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution, and compressed sensing are a few well-known examples of this approach. This paper proposes gradient projection (GP) algorithms for the bound-constrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the Barzilai-Borwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is de-emphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance.
3,223 citations
01 Jan 2000
TL;DR: In this paper, the authors introduce a specific class of linear matrix inequalities (LMI) whose optimal solution can be characterized exactly, i.e., the optimal value equals the spectral radius of the operator.
Abstract: In the first part of this thesis, we introduce a specific class of Linear Matrix Inequalities (LMI) whose optimal solution can be characterized exactly. This family corresponds to the case where the associated linear operator maps the cone of positive semidefinite matrices onto itself. In this case, the optimal value equals the spectral radius of the operator. It is shown that some rank minimization problems, as well as generalizations of the structured singular value ($mu$) LMIs, have exactly this property.
In the same spirit of exploiting structure to achieve computational efficiency, an algorithm for the numerical solution of a special class of frequency-dependent LMIs is presented. These optimization problems arise from robustness analysis questions, via the Kalman-Yakubovich-Popov lemma. The procedure is an outer approximation method based on the algorithms used in the computation of hinf norms for linear, time invariant systems. The result is especially useful for systems with large state dimension.
The other main contribution in this thesis is the formulation of a convex optimization framework for semialgebraic problems, i.e., those that can be expressed by polynomial equalities and inequalities. The key element is the interaction of concepts in real algebraic geometry (Positivstellensatz) and semidefinite programming.
To this end, an LMI formulation for the sums of squares decomposition for multivariable polynomials is presented. Based on this, it is shown how to construct sufficient Positivstellensatz-based convex tests to prove that certain sets are empty. Among other applications, this leads to a nonlinear extension of many LMI based results in uncertain linear system analysis.
Within the same framework, we develop stronger criteria for matrix copositivity, and generalizations of the well-known standard semidefinite relaxations for quadratic programming.
Some applications to new and previously studied problems are presented. A few examples are Lyapunov function computation, robust bifurcation analysis, structured singular values, etc. It is shown that the proposed methods allow for improved solutions for very diverse questions in continuous and combinatorial optimization.
2,134 citations
TL;DR: It is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility and provide a constructive approach for finding bounded degree solutions to the Positivstellensatz.
Abstract: A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions reducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility. The main tools employed are a semidefinite programming formulation of the sum of squares decomposition for multivariate polynomials, and some results from real algebraic geometry. The techniques provide a constructive approach for finding bounded degree solutions to the Positivstellensatz, and are illustrated with examples from diverse application fields.
1,614 citations
06 Jul 2001
TL;DR: If the Internet is the next great subject for Theoretical Computer Science to model and illuminate mathematically, then Game Theory, and Mathematical Economics more generally, are likely to prove useful tools.
Abstract: If the Internet is the next great subject for Theoretical Computer Science to model and illuminate mathematically, then Game Theory, and Mathematical Economics more generally, are likely to prove useful tools. In this talk I survey some opportunities and challenges in this important frontier.
1,079 citations