scispace - formally typeset
Journal ArticleDOI

The Lithium–Oxygen Battery with Ether-Based Electrolytes

Reads0
Chats0
TLDR
It is demonstrated that ether-based electrolytes are not suitable for rechargeable Li–O2 cells, although the ethers are more stable than the organic carbonates, the Li2O2 that forms on the first discharge is accompanied by electrolyte decomposition, to give a mixture of Li2CO3, HCO2 Li, CH3CO2Li, polyethers/ esters, CO2, and H2O.
Abstract
The rechargeable Li–air (O2) battery is receiving a great deal of interest because theoretically it can store significantly more energy than lithium ion batteries, thus potentially transforming energy storage. Since it was first described, a number of aspects of the Li–O2 battery with a non-aqueous electrolyte have been investigated. The electrolyte is recognized as one of the greatest challenges. To date, organic carbonate-based electrolytes (e.g. LiPF6 in propylene carbonate) have been widely used. However, recently, it has been shown that instead of O2 being reduced in the porous cathode to form Li2O2, as desired, discharge in organic carbonate electrolytes is associated with severe electrolyte decomposition. As a result it is very important to investigate other solvents in the search for a suitable electrolyte. In this regard much attention is now focused on electrolytes based on ethers (e.g. tetraglyme (tetraethylene glycol dimethyl ether)). Ethers are attractive for the Li–O2 battery because they are one of the few solvents that combine the following attributes: capable of operating with a lithium metal anode, stable to oxidation potentials in excess of 4.5 V versus Li/Li, safe, of low cost and, in the case of higher molecular weights, such as tetraglyme, they are of low volatility. Crucially, they are also anticipated to show greater stability towards reduced O2 species compared with organic carbonates. Herein we show that although the ethers are more stable than the organic carbonates, the Li2O2 that forms on the first discharge is accompanied by electrolyte decomposition, to give a mixture of Li2CO3, HCO2Li, CH3CO2Li, polyethers/ esters, CO2, and H2O. The extent of electrolyte degradation compared with Li2O2 formation on discharge appears to increase rapidly with cycling (that is, charging and discharging), such that after only 5 cycles there is little or no evidence of Li2O2 from powder X-ray diffraction. We show that the same decomposition products occur for linear chain lengths other than tetraglyme. In the case of cyclic ethers, such as 1,3dioxolane and 2-methyltetrahydrofuran (2-Me-THF), decomposition also occurs. For 1,3-dioxolane, decomposition forms polyethers/esters, Li2CO3, HCO2Li, and C2H4(OCO2Li)2, and for 2-Me-THF the main products are HCO2Li, CH3CO2Li; in both cases CO2 and H2O evolve. The results presented herein demonstrate that ether-based electrolytes are not suitable for rechargeable Li–O2 cells. A Li–O2 cell consisting of a lithium metal anode, an electrolyte, comprising 1m LiPF6 in tetraglyme, and a porous cathode (Super P/Kynar) was constructed as described in the Experimental Section. The cell was discharged in 1 atm O2 to 2 V. The porous cathode was then removed, washed with CH3CN, and examined by powder X-ray diffraction (PXRD) and FTIR. The results are presented in Figure 1 and Figure 2. The PXRD data demonstrate the presence of Li2O2, consistent with previous PXRD data for a Li–O2 cell with a tetraglyme electrolyte at the end of the first discharge. However, examination of the FTIR spectra, Figure 2, reveals that, in addition to Li2O2, other products form. Although the FTIR spectra provide clear evidence of electrolyte decom-

read more

Citations
More filters
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Journal ArticleDOI

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.

TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Journal ArticleDOI

Promise and reality of post-lithium-ion batteries with high energy densities

TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
References
More filters
Journal ArticleDOI

Lithium−Air Battery: Promise and Challenges

TL;DR: In this article, the authors summarized the promise and challenges facing development of practical Li−air batteries and the current understanding of its chemistry, and showed that the fundamental battery chemistry during discharge is the electrochemical oxidation of lithium metal at the anode and reduction of oxygen from air at the cathode.
Journal ArticleDOI

A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery

TL;DR: In this paper, a rechargeable Li/O{sub 2} battery is reported, which consists of a conductive organic polymer electrolyte membrane sandwiched by a thin Li metal foil anode, and a thin carbon composite electrode on which oxygen, the electroactive cathode material, accessed from the environment, is reduced during discharge to generate electric power.
Journal ArticleDOI

Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes

TL;DR: Mechanisms are proposed for the reactions on discharge and charge that are consistent with the widely observed voltage gap in Li-O(2) cells.
Journal ArticleDOI

Platinum−Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium−Air Batteries

TL;DR: PtAu nanoparticles were shown to strongly enhance the kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable Li-O(2) cells, found to exhibit the highest round-trip efficiency reported to date.
Journal ArticleDOI

Rechargeable LI2O2 electrode for lithium batteries.

TL;DR: In this paper, the authors demonstrate two essential prerequisites for the successful operation of a rechargeable Li/O2 battery; that the Li2O2 formed on discharging such an O2 electrode is decomposed to Li and O2 on charging (shown here by in situ mass spectrometry), with or without a catalyst, and that charge/discharge cycling is sustainable for many cycles.
Related Papers (5)