scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Luminosity function and stellar evolution

01 Jan 1955-The Astrophysical Journal-Vol. 121, pp 161-167
TL;DR: In this paper, the evolutionary significance of the observed luminosity function for main-sequence stars in the solar neighborhood is discussed and it is shown that stars move off the main sequence after burning about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in a solar neighborhood for the last five billion years.
Abstract: The evolutionary significance of the observed luminosity function for main-sequence stars in the solar neighborhood is discussed. The hypothesis is made that stars move off the main sequence after burning about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in the solar neighborhood for the last five billion years. Using this hypothesis and the observed luminosity function, the rate of star creation as a function of stellar mass is calculated. The total number and mass of stars which have moved off the main sequence is found to be comparable with the total number of white dwarfs and with the total mass of all fainter main-sequence stars, respectively.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Abstract: We present a new model for computing the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities. These predictions are based on a newly available library of observed stellar spectra. We also compute the spectral evolution across a larger wavelength range, from 91 A to 160 micron, at lower resolution. The model incorporates recent progress in stellar evolution theory and an observationally motivated prescription for thermally-pulsing stars on the asymptotic giant branch. The latter is supported by observations of surface brightness fluctuations in nearby stellar populations. We show that this model reproduces well the observed optical and near-infrared colour-magnitude diagrams of Galactic star clusters of various ages and metallicities. Stochastic fluctuations in the numbers of stars in different evolutionary phases can account for the full range of observed integrated colours of star clusters in the Magellanic Clouds. The model reproduces in detail typical galaxy spectra from the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We exemplify how this type of spectral fit can constrain physical parameters such as the star formation history, metallicity and dust content of galaxies. Our model is the first to enable accurate studies of absorption-line strengths in galaxies containing stars over the full range of ages. Using the highest-quality spectra of the SDSS EDR, we show that this model can reproduce simultaneously the observed strengths of those Lick indices that do not depend strongly on element abundance ratios [abridged].

10,384 citations

Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations


Cites background or methods from "The Luminosity function and stellar..."

  • ...These latter were presented as power law approximations, dN/dm ∝ m−α, as initially suggested by Salpeter (1955), with an exponent close to the Salpeter value α = 2.35....

    [...]

  • ...Since the pioneering paper of Salpeter (1955), several fundamental reviews on the Galac- tic stellar mass function (MF) have been written by, in particular, Schmidt (1959), Miller & Scalo (1979, hereafter MS79), Scalo (1986)....

    [...]

  • ...The most widely used functional form for the MF is the power law, as suggested origi- nally by Salpeter (1955): ξ(log m) = A m−x (10) This form is believed to adequately describe the IMF of massive stars in our Galaxy, m & 1 M⊙, with an exponent x ≃ 1.7 (Scalo 1986, Table VII), for a standard…...

    [...]

Journal ArticleDOI
Pavel Kroupa1
TL;DR: In this paper, the uncertainty inherent in any observational estimate of the IMF is investigated by studying the scatter introduced by Poisson noise and the dynamical evolution of star clusters, and it is found that this apparent scatter reproduces quite well the observed scatter in power-law index determinations, thus defining the fundamental limit within which any true variation becomes undetectable.
Abstract: A universal initial mass function (IMF) is not intuitive, but so far no convincing evidence for a variable IMF exists. The detection of systematic variations of the IMF with star-forming conditions would be the Rosetta Stone for star formation. In this contribution an average or Galactic-field IMF is defined, stressing that there is evidence for a change in the power-law index at only two masses: near 0.5 M⊙ and near 0.08 M⊙. Using this supposed universal IMF, the uncertainty inherent in any observational estimate of the IMF is investigated by studying the scatter introduced by Poisson noise and the dynamical evolution of star clusters. It is found that this apparent scatter reproduces quite well the observed scatter in power-law index determinations, thus defining the fundamental limit within which any true variation becomes undetectable. The absence of evidence for a variable IMF means that any true variation of the IMF in well-studied populations must be smaller than this scatter. Determinations of the power-law indices α are subject to systematic errors arising mostly from unresolved binaries. The systematic bias is quantified here, with the result that the single-star IMFs for young star clusters are systematically steeper by Δα≈0.5 between 0.1 and 1 M⊙ than the Galactic-field IMF, which is populated by, on average, about 5-Gyr-old stars. The MFs in globular clusters appear to be, on average, systematically flatter than the Galactic-field IMF (Piotto & Zoccali; Paresce & De Marchi), and the recent detection of ancient white-dwarf candidates in the Galactic halo and the absence of associated low-mass stars (Ibata et al.; Mendez & Minniti) suggest a radically different IMF for this ancient population. Star formation in higher metallicity environments thus appears to produce relatively more low-mass stars. While still tentative, this is an interesting trend, being consistent with a systematic variation of the IMF as expected from theoretical arguments.

6,784 citations


Cites background from "The Luminosity function and stellar..."

  • ...It is not surprising that the power-law slope has changed little over the decades (Salpeter 1955: a 2:35 for 0:4 , m , 10 M( : From Fig....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Abstract: Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence and are key probes of the evolutionary histories of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field. One of the most recognizable features of galaxies along the Hubble sequence is the wide range in young stellar content and star formation activity. This variation in stellar content is part of the basis of the Hubble classification itself (Hubble 1926), and understanding its physical nature and origins is fundamental to understanding galaxy evolution in its broader context. This review deals with the global star formation properties of galaxies, the systematics of those properties along the Hubble sequence, and their implications for galactic evolution. I interpret “Hubble sequence” in this context very loosely, to encompass not only morphological type but other properties such as gas content, mass, bar structure, and dynamical environment, which can strongly influence the largescale star formation rate (SFR).

6,640 citations

Journal ArticleDOI
TL;DR: Starburst99 as mentioned in this paper is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation, which is an improved and extended version of the data set previously published by Leitherer & Heckman.
Abstract: Starburst99 is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation. The models are an improved and extended version of the data set previously published by Leitherer & Heckman. We have upgraded our code by implementing the latest set of stellar evolution models of the Geneva group and the model atmosphere grid compiled by Lejeune et al. Several predictions which were not included in the previous publication are shown here for the first time. The models are presented in a homogeneous way for five metallicities between Z = 0.040 and 0.001 and three choices of the initial mass function. The age coverage is 106—109 yr. We also show the spectral energy distributions which are used to compute colors and other quantities. The full data set is available for retrieval at a Web site, which allows users to run specific models with nonstandard parameters as well. We also make the source code available to the community.

4,212 citations


Additional excerpts

  • ...This approximates the classical Salpeter (1955) IMF....

    [...]