scispace - formally typeset
Search or ask a question
Book

The Mouse Brain in Stereotaxic Coordinates

31 Jul 2001-
TL;DR: The 3rd edition of this atlas is now in more practical 14"x11" format for convenient lab use and includes a CD of all plates and diagrams, as well as Adobe Illustrator files of the diagrams, and a variety of additional useful material.
Abstract: "The Mouse Brain in Stereotaxic Coordinates" is the most widely used and cited atlas of the mouse brain in print. It provides researchers and students with both accurate stereotaxic coordinates for laboratory use, and detailed delineations and indexing of structures for reference. The accompanying DVD provides drawings of brains structures that can be used as templates for making figures for publication. The 3rd edition is both a major revision and an expansion of previous editions. Delineations and photographs in the horizontal plane of section now complement the coronal and sagittal series, and all the tissue sections are now shown in high resolution digital color photography. The photographs of the sections and the intermediate sections are also provided on the accompanying DVD in high-resolution JP 2000 format. The delineations of structures have been revised, and naming conventions made consistent with Paxinos and Watson's "Rat Brain in Stereotaxic Coordinates, 6th Edition". The 3rd edition of this atlas is now in more practical 14"x11" format for convenient lab use. This edition is in full color throughout. It includes a CD of all plates and diagrams, as well as Adobe Illustrator files of the diagrams, and a variety of additional useful material. Coronal and sagittal diagrams are completely reworked and updated. Rhombomeric borders are included in sagittal figures, for the first time in mammals. Microscopic plates are scanned with a new method in much higher quality.
Citations
More filters
Journal ArticleDOI
20 Aug 1999-Cell
TL;DR: It is proposed that orexin regulates sleep/wakefulness states, and that Orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.

2,935 citations

Journal ArticleDOI
TL;DR: It is shown that a naturally exfoliated human organ contains a population of stem cells that are completely different from previously identified stem cells, which may be an unexpected unique resource for stem-cell therapies including autologous stem- cell transplantation and tissue engineering.
Abstract: To isolate high-quality human postnatal stem cells from accessible resources is an important goal for stem-cell research. In this study we found that exfoliated human deciduous tooth contains multipotent stem cells [stem cells from human exfoliated deciduous teeth (SHED)]. SHED were identified to be a population of highly proliferative, clonogenic cells capable of differentiating into a variety of cell types including neural cells, adipocytes, and odontoblasts. After in vivo transplantation, SHED were found to be able to induce bone formation, generate dentin, and survive in mouse brain along with expression of neural markers. Here we show that a naturally exfoliated human organ contains a population of stem cells that are completely different from previously identified stem cells. SHED are not only derived from a very accessible tissue resource but are also capable of providing enough cells for potential clinical application. Thus, exfoliated teeth may be an unexpected unique resource for stem-cell therapies including autologous stem-cell transplantation and tissue engineering.

2,633 citations

Journal ArticleDOI
24 May 2001-Nature
TL;DR: An integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus is proposed and it is shown that melanocortin peptides have an autoinhibitory effect on this circuit.
Abstract: The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (gamma-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.

2,193 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: In this paper, the authors showed that post-prandial elevation of PYY3-36 may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.
Abstract: Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus(1). The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons(2) in the arcuate nucleus, which is accessible to peripheral hormones(3). Peptide YY3-36 (PYY3-36), a Y2R agonist(4), is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal(5-7). Here we show that peripheral injection of PYY3-36 in rats inhibits food intake and reduces weight gain. PYY3-36 also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY3-36 increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY3-36 inhibits food intake. PYY3-36 also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons(8). In humans, infusion of normal postprandial concentrations of PYY3-36 significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY3-36 may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.

2,110 citations

Journal ArticleDOI
10 Apr 2014-Nature
TL;DR: A brain-wide, cellular-level, mesoscale connectome for the mouse, using enhanced green fluorescent protein-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain.
Abstract: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.

2,051 citations

Related Papers (5)
11 Jan 2007-Nature
Ed S. Lein, Michael Hawrylycz, Nancy Ao, Mikael Ayres, Amy Bensinger, Amy Bernard, Andrew F. Boe, Mark S. Boguski, Mark S. Boguski, Kevin S. Brockway, Emi J. Byrnes, Lin Chen, Li Chen, Tsuey-Ming Chen, Mei Chi Chin, Jimmy Chong, Brian E. Crook, Aneta Czaplinska, Chinh Dang, Suvro Datta, Nick Dee, Aimee L. Desaki, Tsega Desta, Ellen Diep, Tim A. Dolbeare, Matthew J. Donelan, Hong-Wei Dong, Jennifer G. Dougherty, Ben J. Duncan, Amanda Ebbert, Gregor Eichele, Lili K. Estin, Casey Faber, Benjamin A.C. Facer, Rick Fields, Shanna R. Fischer, Tim P. Fliss, Cliff Frensley, Sabrina N. Gates, Katie J. Glattfelder, Kevin R. Halverson, Matthew R. Hart, John G. Hohmann, Maureen P. Howell, Darren P. Jeung, Rebecca A. Johnson, Patrick T. Karr, Reena Kawal, Jolene Kidney, Rachel H. Knapik, Chihchau L. Kuan, James H. Lake, Annabel R. Laramee, Kirk D. Larsen, Christopher Lau, Tracy Lemon, Agnes J. Liang, Ying Liu, Lon T. Luong, Jesse Michaels, Judith J. Morgan, Rebecca J. Morgan, Marty Mortrud, Nerick Mosqueda, Lydia Ng, Randy Ng, Geralyn J. Orta, Caroline C. Overly, Tu H. Pak, Sheana Parry, Sayan Dev Pathak, Owen C. Pearson, Ralph B. Puchalski, Zackery L. Riley, Hannah R. Rockett, Stephen A. Rowland, Joshua J. Royall, Marcos J. Ruiz, Nadia R. Sarno, Katherine Schaffnit, Nadiya V. Shapovalova, Taz Sivisay, Clifford R. Slaughterbeck, Simon Smith, Kimberly A. Smith, Bryan I. Smith, Andy J. Sodt, Nick N. Stewart, Kenda-Ruth Stumpf, Susan M. Sunkin, Madhavi Sutram, Angelene Tam, Carey D. Teemer, Christina Thaller, Carol L. Thompson, Lee R. Varnam, Axel Visel, Axel Visel, Ray M. Whitlock, Paul Wohnoutka, Crissa K. Wolkey, Victoria Y. Wong, Matthew J.A. Wood, Murat B. Yaylaoglu, Rob Young, Brian L. Youngstrom, Xu Feng Yuan, Bin Zhang, Theresa A. Zwingman, Allan R. Jones