scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The NCI60 human tumour cell line anticancer drug screen

01 Oct 2006-Nature Reviews Cancer (Nature Publishing Group)-Vol. 6, Iss: 10, pp 813-823
TL;DR: The development, use and productivity of the NCI60 screen are reviewed, highlighting several outcomes that have contributed to advances in cancer chemotherapy.
Abstract: The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.
Citations
More filters
Journal ArticleDOI
16 Jan 2014-Cell
TL;DR: Targeted metabolomic profiling and chemoproteomics revealed that GPX4 is an essential regulator of ferroptotic cancer cell death and sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPx4-regulated ferroPTosis.

3,457 citations


Cites result from "The NCI60 human tumour cell line an..."

  • ...NCI60 cell line testing and some in vivo toxicity testing were carried out through NCI/DTP....

    [...]

  • ...For the competitor-treated samples, 20 flasks of cells were treatedwith 0.5 mM (1S, 3R)-RSL3 (‘‘competitor’’) for 20min (F) Sensitivity profile of 53 cancer cell lines in the ‘‘NCI60’’ cell panel against eras (G) The eight RCC cell lines were retested with erastin to confirm their sensitivity (H) Erastin and RSL3 generated lipid ROS in the two RCC cell lines....

    [...]

  • ...The potency of erastin was also determined in a 60-cancer cell line panel (NCI60) (Shoemaker, 2006) from eight diverse tissues, which revealed increased sensitivity of renal cell carcinomas (RCCs), compared to the other tissues examined (Figures 7F and S7D)....

    [...]

Journal ArticleDOI
TL;DR: It is proposed that ZEB1 links EMT-activation and stemness-maintenance by suppressingstemness-inhibiting microRNAs (miRNAs) and thereby is a promoter of mobile, migrating cancer stem cells.
Abstract: Invasion and metastasis of carcinomas is promoted by the activation of the embryonic 'epithelial to mesenchymal transition' (EMT) program, which triggers cellular mobility and subsequent dissemination of tumour cells. We recently showed that the EMT-activator ZEB1 (zinc finger E-box binding homeobox 1) is a crucial promoter of metastasis and demonstrated that ZEB1 inhibits expression of the microRNA-200 (miR-200) family, whose members are strong inducers of epithelial differentiation. Here, we report that ZEB1 not only promotes tumour cell dissemination, but is also necessary for the tumour-initiating capacity of pancreatic and colorectal cancer cells. We show that ZEB1 represses expression of stemness-inhibiting miR-203 and that candidate targets of miR-200 family members are also stem cell factors, such as Sox2 and Klf4. Moreover, miR-200c, miR-203 and miR-183 cooperate to suppress expression of stem cell factors in cancer cells and mouse embryonic stem (ES) cells, as demonstrated for the polycomb repressor Bmi1. We propose that ZEB1 links EMT-activation and stemness-maintenance by suppressing stemness-inhibiting microRNAs (miRNAs) and thereby is a promoter of mobile, migrating cancer stem cells. Thus, targeting the ZEB1-miR-200 feedback loop might form the basis of a promising treatment for fatal tumours, such as pancreatic cancer.

1,622 citations


Cites background from "The NCI60 human tumour cell line an..."

  • ...For analysis of ZEB1 and miRNA expression in the NCI60 pane...

    [...]

Journal ArticleDOI
TL;DR: The attributes of BODIPY dyes for PDT are summarized, and substituents with appropriate oxidation potentials are summarized in some related areas.
Abstract: BODIPY dyes tend to be highly fluorescent, but their emissions can be attenuated by adding substituents with appropriate oxidation potentials. Substituents like these have electrons to feed into photoexcited BODIPYs, quenching their fluorescence, thereby generating relatively long-lived triplet states. Singlet oxygen is formed when these triplet states interact with 3O2. In tissues, this causes cell damage in regions that are illuminated, and this is the basis of photodynamic therapy (PDT). The PDT agents that are currently approved for clinical use do not feature BODIPYs, but there are many reasons to believe that this situation will change. This review summarizes the attributes of BODIPY dyes for PDT, and in some related areas.

1,599 citations

Journal ArticleDOI
25 May 2012-Science
TL;DR: Glycine consumption and expression of the mitochondrial glycine biosynthetic pathway was identified as strongly correlated with rates of proliferation across cancer cells, and higher expression of this pathway was associated with greater mortality in breast cancer patients.
Abstract: Metabolic reprogramming has been proposed to be a hallmark of cancer, yet a systematic characterization of the metabolic pathways active in transformed cells is currently lacking. Using mass spectrometry, we measured the consumption and release (CORE) profiles of 219 metabolites from media across the NCI-60 cancer cell lines, and integrated these data with a preexisting atlas of gene expression. This analysis identified glycine consumption and expression of the mitochondrial glycine biosynthetic pathway as strongly correlated with rates of proliferation across cancer cells. Antagonizing glycine uptake and its mitochondrial biosynthesis preferentially impaired rapidly proliferating cells. Moreover, higher expression of this pathway was associated with greater mortality in breast cancer patients. Increased reliance on glycine may represent a metabolic vulnerability for selectively targeting rapid cancer cell proliferation.

1,208 citations

Journal ArticleDOI
TL;DR: The models commonly used to investigate breast cancer including cell lines, xenografts and genetically engineered mice are discussed to help address the question: what is the most powerful way to investigate this heterogeneous disease.
Abstract: Breast cancer is not a single disease, but is instead a collection of diseases that have distinct histopathological features, genetic and genomic variability, and diverse prognostic outcomes. Thus, no individual model would be expected to completely recapitulate this complex disease. Here, the models commonly used to investigate breast cancer including cell lines, xenografts and genetically engineered mice, are discussed to help address the question: what is the most powerful way to investigate this heterogeneous disease?

684 citations


Cites background from "The NCI60 human tumour cell line an..."

  • ...seems to have several advantages over the well-studied NCI60 panel of cancer cell lines, which contains only 7 breast cancer cell lines, most of which are the basal subtyp...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation and is used to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.

50,114 citations


"The NCI60 human tumour cell line an..." refers methods in this paper

  • ...A simple colorimetric (MTT) assay for use in immunology was introduced in 1983 (Ref...

    [...]

Journal ArticleDOI
TL;DR: The SRB assay provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening.
Abstract: We have developed a rapid, sensitive, and inexpensive method for measuring the cellular protein content of adherent and suspension cultures in 96-well microtiter plates. The method is suitable for ordinary laboratory purposes and for very large-scale applications, such as the National Cancer Institute's disease-oriented in vitro anticancer-drug discovery screen, which requires the use of several million culture wells per year. Cultures fixed with trichloroacetic acid were stained for 30 minutes with 0.4% (wt/vol) sulforhodamine B (SRB) dissolved in 1% acetic acid. Unbound dye was removed by four washes with 1% acetic acid, and protein-bound dye was extracted with 10 mM unbuffered Tris base [tris (hydroxymethyl)aminomethane] for determination of optical density in a computer-interfaced, 96-well microtiter plate reader. The SRB assay results were linear with the number of cells and with values for cellular protein measured by both the Lowry and Bradford assays at densities ranging from sparse subconfluence to multilayered supraconfluence. The signal-to-noise ratio at 564 nm was approximately 1.5 with 1,000 cells per well. The sensitivity of the SRB assay compared favorably with sensitivities of several fluorescence assays and was superior to those of both the Lowry and Bradford assays and to those of 20 other visible dyes. The SRB assay provides a colorimetric end point that is nondestructive, indefinitely stable, and visible to the naked eye. It provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening. SRB fluoresces strongly with laser excitation at 488 nm and can be measured quantitatively at the single-cell level by static fluorescence cytometry.

9,019 citations

Journal Article
TL;DR: Since the microculture tetrazolium assay provides sensitive and reproducible indices of growth as well as drug sensitivity in individual cell lines over the course of multiple passages and several months' cultivation, it appears suitable for initial-stage in vitro drug screening.
Abstract: For the past 30 years strategies for the preclinical discovery and development of potential anticancer agents have been based largely upon the testing of agents in mice bearing transplantable leukemias and solid tumors derived from a limited number of murine as well as human sources. The feasibility of implementing an alternate approach, namely combined in vitro/in vivo screening for selective cytotoxicity among panels of human tumor cell lines derived from a broad spectrum of human solid tumors is under investigation. A group of 30 cell lines acquired from a variety of sources and representing 8 lung cancer pathologies as well as 76 cell lines representing 10 other categories of human cancer (carcinomas of colon, breast, kidney, prostate, ovary, head and neck; glioma; leukemia; melanoma; and sarcoma) have exhibited acceptable growth characteristics and suitable colorimetric profiles in a single, standard culture medium. Measurements of in vitro growth in microculture wells by cell-mediated reduction of tetrazolium showed excellent correlation (0.89 less than r2 less than 0.98) with measurements of cellular protein in adherent cell line cultures as well as viable cell count in suspension cell line cultures (0.94 less than r2 less than 0.99). Since the microculture tetrazolium assay provides sensitive and reproducible indices of growth as well as drug sensitivity in individual cell lines over the course of multiple passages and several months' cultivation, it appears suitable for initial-stage in vitro drug screening.

3,098 citations


"The NCI60 human tumour cell line an..." refers methods in this paper

  • ...This technology, which relies on the metabolic reduction of a tetrazolium dye in viable cells to a coloured formazan product, was adapted and evaluated for growth-inhibition screenin...

    [...]

Journal ArticleDOI
TL;DR: A pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system is described.
Abstract: We describe here the development and implementation of a pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system. The ultimate goal of this disease-oriented screen is to facilitate the discovery of new compounds with potential cell line-specific and/or subpanel-specific antitumor activity. In the current screening protocol, each cell line is inoculated onto microtiter plates, then preincubated for 24-28 hours. Subsequently, test agents are added in five 10-fold dilutions and the culture is incubated for an additional 48 hours. For each test agent, a dose-response profile is generated. End-point determinations of the cell viability or cell growth are performed by in situ fixation of cells, followed by staining with a protein-binding dye, sulforhodamine B (SRB). The SRB binds to the basic amino acids of cellular macromolecules; the solubilized stain is measured spectrophotometrically to determine relative cell growth or viability in treated and untreated cells. Following the pilot screening studies, a screening rate of 400 compounds per week has been consistently achieved.

3,011 citations

Journal Article
TL;DR: The new XTT reagent provides for a simplified, in vitro cell growth assay with possible applicability to a variety of problems in cellular pharmacology and biology, but still shares many of the limitations and potential pitfalls of MTT or other tetrazolium-based assays.
Abstract: We have previously described the application of an automated microculture tetrazolium assay (MTA) involving dimethyl sulfoxide solubilization of cellular-generated 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-formazan to the in vitro assessment of drug effects on cell growth (M.C. Alley et al., Proc. Am. Assoc. Cancer Res., 27:389, 1986; M.C. Alley et al., Cancer Res. 48:589-601, 1988). There are several inherent disadvantages of this assay, including the safety hazard of personnel exposure to large quantities of dimethyl sulfoxide, the deleterious effects of this solvent on laboratory equipment, and the inefficient metabolism of MTT by some human cell lines. Recognition of these limitations prompted development of possible alternative MTAs utilizing a different tetrazolium reagent, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl] -2H- tetrazolium hydroxide (XTT), which is metabolically reduced in viable cells to a water-soluble formazan product. This reagent allows direct absorbance readings, therefore eliminating a solubilization step and shortening the microculture growth assay procedure. Most human tumor cell lines examined metabolized XTT less efficiently than MTT; however, the addition of phenazine methosulfate (PMS) markedly enhanced cellular reduction of XTT. In the presence of PMS, the XTT reagent yielded usable absorbance values for growth and drug sensitivity evaluations with a variety of cell lines. Depending on the metabolic reductive capacity of a given cell line, the optimal conditions for a 4-h XTT incubation assay were 50 micrograms of XTT and 0.15 to 0.4 microgram of PMS per well. Drug profiles obtained with representative human tumor cell lines for several standard compounds utilizing the XTT-PMS methodology were similar to the profiles obtained with MTT. Addition of PMS appeared to have little effect on the metabolism of MTT. The new XTT reagent thus provides for a simplified, in vitro cell growth assay with possible applicability to a variety of problems in cellular pharmacology and biology. However, the MTA using the XTT reagent still shares many of the limitations and potential pitfalls of MTT or other tetrazolium-based assays.

2,380 citations

Related Papers (5)