scispace - formally typeset
Open AccessJournal ArticleDOI

The neighbor-joining method: a new method for reconstructing phylogenetic trees.

Reads0
Chats0
TLDR
The neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods for reconstructing phylogenetic trees from evolutionary distance data.
Abstract
A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice

TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Journal ArticleDOI

MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

TL;DR: The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models, inferring ancestral states and sequences, and estimating evolutionary rates site-by-site.
Journal ArticleDOI

MUSCLE: multiple sequence alignment with high accuracy and high throughput

TL;DR: MUSCLE is a new computer program for creating multiple alignments of protein sequences that includes fast distance estimation using kmer counting, progressive alignment using a new profile function the authors call the log-expectation score, and refinement using tree-dependent restricted partitioning.
Journal ArticleDOI

MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets

TL;DR: The latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine, has been optimized for use on 64-bit computing systems for analyzing larger datasets.
Journal ArticleDOI

MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0

TL;DR: Version 4 of MEGA software expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses.
Related Papers (5)