scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The New RNA World: Growing Evidence for Long Noncoding RNA Functionality

01 Oct 2017-Trends in Genetics (Elsevier)-Vol. 33, Iss: 10, pp 665-676
TL;DR: This Opinion article reemphasizes the unique abilities of RNAs to form myriad structures as well as to interact with other RNAs, DNA, and proteins, which provide them with unique and powerful abilities.
About: This article is published in Trends in Genetics.The article was published on 2017-10-01. It has received 177 citations till now. The article focuses on the topics: Long non-coding RNA & RNA.
Citations
More filters
Journal ArticleDOI
TL;DR: How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
Abstract: The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.

175 citations

Journal ArticleDOI
TL;DR: The biochemical assays that can be employed to determine the lncRNAs structural configurations will be discussed and the implications and challenges of linking function and lncRNA structure to design novel RNA therapeutic approaches will be analyzed.
Abstract: RNA has emerged as the prime target for diagnostics, therapeutics and the development of personalized medicine. In particular, the non-coding RNAs (ncRNAs) that do not encode proteins, display remarkable biochemical versatility. They can fold into complex structures and interact with proteins, DNA and other RNAs, modulating the activity, DNA targets or partners of multiprotein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of epigenetic control that is dysregulated in disease. Intriguingly, for long non-coding RNAs (lncRNAs, >200 nucleotides length) structural conservation rather than nucleotide sequence conservation seems to be crucial for maintaining their function. LncRNAs tend to acquire complex secondary and tertiary structures and their functions only impose very subtle sequence constraints. In the present review we will discuss the biochemical assays that can be employed to determine the lncRNA structural configurations. The implications and challenges of linking function and lncRNA structure to design novel RNA therapeutic approaches will also be analyzed.

157 citations


Cites background from "The New RNA World: Growing Evidence..."

  • ...Additionally, lncRNAs exhibit low abundance that restricts their mode and sites of action (Mercer et al., 2008; Cabili et al., 2011, 2015; Washietl et al., 2014; Ulitsky, 2016; Wilk et al., 2016; Jandura and Krause, 2017)....

    [...]

Journal ArticleDOI
TL;DR: This study suggests that H19 mediates 5-Fu resistance in CRC via SIRT1 mediated autophagy, providing a novel mechanistic role of H19 in CRC chemoresistance, suggesting that H 19 may function as a marker for prediction of chemotherapeutic response to 5- Fu.
Abstract: Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer (CRC) patients. The role of the differentially expressed lncRNAs in 5-Fluorouracil chemoresistance has not fully explained. Here, we observed lncRNA H19 was associated with the 5-Fu resistance in CRC. Quantitative analysis indicated that H19 was significantly increased in recurrent CRC patient samples. Kaplan–Meier survival analysis indicated that high H19 expression in CRC tissues was significantly associated with poor recurrent free survival. Our functional studies demonstrated that H19 promoted colorectal cells 5-Fu resistance. Mechanistically, H19 triggered autophagy via SIRT1 to induce cancer chemoresistance. Furthermore, bioinformatics analysis showed that miR-194–5p could directly bind to H19, suggesting H19 might work as a ceRNA to sponge miR-194–5p, which was confirmed by Dual-luciferase reporter assay and Immunoprecipitation assay. Extensively, our study also showed that SIRT1 is the novel direct target of miR-194–5p in CRC cells. Taken together, our study suggests that H19 mediates 5-Fu resistance in CRC via SIRT1 mediated autophagy. Our finding provides a novel mechanistic role of H19 in CRC chemoresistance, suggesting that H19 may function as a marker for prediction of chemotherapeutic response to 5-Fu.

136 citations

Journal ArticleDOI
25 Nov 2020-Cell
TL;DR: The weak selection regime that dominates the evolution of most multicellular eukaryotes provides ample material for functional innovation with relatively little adaptation involved.

130 citations

Journal ArticleDOI
TL;DR: YY1-activated LINC00673 may exert an oncogenic function by acting as a sponge for miR-515-5p to upregulate the MARK4 and then inhibit Hippo signaling pathway, and may serve as a potential therapeutic target.
Abstract: An increasing number of studies have shown that long noncoding RNAs (lncRNAs) play essential roles in tumor initiation and progression. LncRNAs act as tumor promoters or suppressors by targeting specific genes via epigenetic modifications and competing endogenous RNA (ceRNA) mechanisms. In this study, we explored the function and detailed mechanisms of long intergenic nonprotein coding RNA 673 (LINC00673) in breast cancer progression. Quantitative real-time PCR (qRT-PCR) was used to examine the expression of LINC00673 in breast cancer tissues and in adjacent normal tissues. Gain-of-function and loss-of function experiments were conducted to investigate the biological functions of LINC00673 in vitro and in vivo. We also explored the potential role of LINC00673 as a therapeutic target using antisense oligonucleotide (ASO) in vivo. RNA sequencing (RNA-seq), dual-luciferase reporter assays, chromatin immunoprecipitation (ChIP) assay, and rescue experiments were performed to uncover the detailed mechanism of LINC00673 in promoting breast cancer progression. In the present study, LINC00673 displayed a trend of remarkably increased expression in breast cancer tissues and was associated with poor prognosis in breast cancer patients. Importantly, LINC00673 depletion inhibited breast cancer cell proliferation by inhibiting the cell cycle and increasing apoptosis. Furthermore, ASO therapy targeting LINC00673 substantially suppressed breast cancer cell proliferation in vivo. Mechanistically, LINC00673 was found to act as a ceRNA by sponging miR-515-5p to regulate MARK4 expression, thus inhibiting the Hippo signaling pathway. Finally, ChIP assay showed that the transcription factor Yin Yang 1 (YY1) could bind to the LINC00673 promoter and increase its transcription in cis. YY1-activated LINC00673 may exert an oncogenic function by acting as a sponge for miR-515-5p to upregulate the MARK4 and then inhibit Hippo signaling pathway, and may serve as a potential therapeutic target.

108 citations

References
More filters
Journal ArticleDOI
TL;DR: The synthesis of enzymes in bacteria follows a double genetic control, which appears to operate directly at the level of the synthesis by the gene of a shortlived intermediate, or messenger, which becomes associated with the ribosomes where protein synthesis takes place.

5,588 citations

Journal ArticleDOI
15 Apr 2010-Nature
TL;DR: It is shown that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression, indicating that l incRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.
Abstract: Large intervening non-coding RNAs (lincRNAs) are pervasively transcribed in the genome yet their potential involvement in human disease is not well understood. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodelling activities. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumours and metastases, and HOTAIR expression level in primary tumours is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb repressive complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings indicate that lincRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.

4,605 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: The transcriptional landscape of the four human HOX loci is characterized at five base pair resolution in 11 anatomic sites and 231 HOX ncRNAs are identified that extend known transcribed regions by more than 30 kilobases, suggesting transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance.

4,003 citations

Journal ArticleDOI
07 Dec 1978-Nature
TL;DR: The wild-type and mutant segmentation patterns are consistent with an antero-posterior gradient in repressor concentration along the embryo and a proximo-distal gradient along the chromosome in the affinities for repressor of each gene's cis-regulatory element.
Abstract: The bithorax gene complex in Drosophila contains a minimum of eight genes that seem to code for substances controlling levels of thoracic and abdominal development. The state of repression of at least four of these genes is controlled by cis-regulatory elements and a separate locus (Polycomb) seems to code for a repressor of the complex. The wild-type and mutant segmentation patterns are consistent with an antero-posterior gradient in repressor concentration along the embryo and a proximo-distal gradient along the chromosome in the affinities for repressor of each gene's cis-regulatory element.

3,520 citations

Journal ArticleDOI
Piero Carninci, Takeya Kasukawa1, Shintaro Katayama, Julian Gough  +194 moreInstitutions (36)
02 Sep 2005-Science
TL;DR: Detailed polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Abstract: This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

3,412 citations

Related Papers (5)