scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.MEDIDD.2021.100086

The new SARS-CoV-2 strain shows a stronger binding affinity to ACE2 due to N501Y mutant.

02 Mar 2021-Vol. 10, pp 100086-100086
Abstract: SARS-CoV-2 is a global challenge due to its ability to spread much faster than the SARS-CoV, which was attributed to the mutations in the receptor binding domain (RBD). These mutations enhanced the electrostatic interactions. Recently, a new strain is reported in the UK that includes a mutation (N501Y) in the RBD, that is possibly increasing the infection rate. Here, using Molecular Dynamics simulations (MD) and Monte Carlo (MC) sampling, we show that the N501 mutation enhanced the electrostatic interactions due to the formation of a strong hydrogen bond between SARS-CoV-2-T500 and ACE2-D355 near the mutation site. In addition, we observed that the electrostatic interactions between the SARS-CoV-2 and ACE2 in the wild type and the mutant are dominated by salt-bridges formed between SARS-CoV-2-K417 and ACE2-D30, SARS-CoV-2-K458, ACE2-E23, and SARS-CoV-2-R403 and ACE2-E37. These interactions contributed more than 40% of the total binding energies.

... read more

Topics: Mutant (52%), Wild type (50%)

55 results found

Open accessPosted ContentDOI: 10.1101/2021.05.04.442663
05 May 2021-bioRxiv
Abstract: The emergence of SARS-CoV-2 variants threatens efforts to contain the COVID-19 pandemic. The number of COVID-19 cases and deaths in India has risen steeply in recent weeks and a novel SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the ACE2 receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyzed whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 entered two out of eight cell lines tested with slightly increased efficiency and was blocked by entry inhibitors. In contrast, B.1.617 was resistant against Bamlanivimab, an antibody used for COVID-19 treatment. Finally, B.1.617 evaded antibodies induced by infection or vaccination, although with moderate efficiency. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.

... read more

Topics: Antibody (51%)

56 Citations

Open accessJournal ArticleDOI: 10.1016/J.CELREP.2021.109415
20 Jul 2021-Cell Reports
Abstract: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens efforts to contain the coronavirus disease 2019 (COVID-19) pandemic. The number of COVID-19 cases and deaths in India has risen steeply, and a SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the angiotensin converting enzyme 2 (ACE2) receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyze whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 enters two of eight cell lines tested with roughly 50% increased efficiency and is equally inhibited by two entry inhibitors. In contrast, B.1.617 is resistant against bamlanivimab, an antibody used for COVID-19 treatment. B.1.617 evades antibodies induced by infection or vaccination, although less so than the B.1.351 variant. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.

... read more

Topics: Antibody (51%)

52 Citations

Open accessPosted ContentDOI: 10.1101/2021.05.14.444076
16 May 2021-bioRxiv
Abstract: Highly transmissible SARS-CoV-2 variants recently identified in India designated B.1.617 and B.1.618 have mutations within the spike protein that may contribute to their increased transmissibility and that could potentially result in re-infection or resistance to vaccine-elicited antibody. B.1.617 encodes a spike protein with mutations L452R, E484Q, D614G and P681R while the B.1.618 spike has mutations {Delta}145-146, E484K and D614G. We generated lentiviruses pseudotyped by the variant proteins and determined their resistance to neutralization by convalescent sera, vaccine-elicited antibodies and therapeutic monoclonal antibodies. Viruses with B.1.617 and B.1.618 spike were neutralized with a 2-5-fold decrease in titer by convalescent sera and vaccine-elicited antibodies. The E484Q and E484K versions were neutralized with a 2-4-fold decrease in titer. Virus with the B.1.617 spike protein was neutralized with a 4.7-fold decrease in titer by the Regeneron monoclonal antibody cocktail as a result of the L452R mutation. The modest neutralization resistance of the variant spike proteins to vaccine elicited antibody suggests that current vaccines will remain protective against the B.1.617 and B.1.618 variants.

... read more

Topics: Titer (54%), Monoclonal antibody (53%), Antibody (51%) ... show more

32 Citations

Open accessPosted ContentDOI: 10.1101/2021.03.02.433156
Matthew Parker1, Benjamin B Lindsey1, Dhruv R. Shah1, Sharon Hsu1  +30 moreInstitutions (4)
03 Mar 2021-bioRxiv
Abstract: SARS-CoV-2 lineage B.1.1.7 viruses are more transmissible, may lead to greater clinical severity, and result in modest reductions in antibody neutralization. subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome and is a crucial step in the SARS-CoV-2 life cycle. Applying our tool (periscope) to ARTIC Network Oxford Nanopore genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA expression profiles are significantly increased in B.1.1.7 infections (n=879). This increase is seen over the previous dominant circulating lineage in the UK, B.1.177 (n=943), which is independent of genomic reads, E gene cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median expression. We hypothesise that this is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT>CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3’ of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles in sequence data to evaluate emerging potential variants of concern. One Sentence Summary The recently emerged and more transmissible SARS-CoV-2 lineage B.1.1.7 shows greater subgenomic RNA expression in clinical infections and enhanced expression of a noncanonical subgenomic RNA near ORF9b.

... read more

Topics: Subgenomic mRNA (59%), Transcription (biology) (54%), Gene (53%)

15 Citations

Open accessPosted ContentDOI: 10.1101/2021.03.21.21253418
25 Mar 2021-medRxiv
Abstract: The sharp increase of COVID-19 cases in late 2020 has made Brazil the new epicenter of the ongoing SARS-CoV-2 pandemic. Novel SARS-CoV-2 lineages P.1 and P.2, first identified respectively in Manaus and Rio de Janeiro, have been associated with potentially higher transmission rates and antibody neutralization escape. In this study, we performed a whole-genome sequencing of 185 samples isolated from three out of the five Brazilian regions, including Amazonas (North region), Rio Grande do Norte, Paraiba and Bahia (Northeast region), and Rio de Janeiro (Southeast region) aiming to identify SARS-CoV-2 mutations that could be involved in the surge of COVID19 cases in Brazil. Here, we showed a widespread dispersion of P.1 and P.2 across Brazilian regions. Except for Manaus, P.2 was the predominant lineage identified country-wise. P.2 lineage was estimated to have originated in February, 2020 and has diverged into new clades. Interstate transmission of P.2 was detected since March, but reached its peak in December, 2020 and January, 2021. Transmission of P.1 was also high in December. P.1 origin was inferred to have happened in August 2020. We also confirmed the presence of the variant under investigation (VUI) NP13L, recently described in the southernmost region of Brazil, to have spread across the Northeastern states. P.1, P.2 and NP13L are descended from the ancient B.1.1.28 strain, although during the first phase of the pandemic in Brazil presence of B.1.1.33 strain was also reported. We investigate here the possible occurrence of a new variant of interest descending from B.1.1.33 that also carries the E484K mutation. Indeed, the recurrent report of many novel SARS-CoV-2 genetic variants in Brazil could be due to the absence of effective control measures resulting in high SARS-CoV2 transmission rates. Altogether, our findings provided a landscape of the critical state of SARS-CoV-2 across Brazil and confirm the need to sustain continuous sequencing of the SARS-CoV-2 isolates worldwide in order to early identify novel variants of interest and to monitor for vaccine effectiveness.

... read more

14 Citations


20 results found

Open accessJournal ArticleDOI: 10.1056/NEJMOA2001017
Na Zhu1, Dingyu Zhang, Wenling Wang1, Xingwang Li2  +15 moreInstitutions (3)
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

... read more

Topics: Coronavirus (57%), Betacoronavirus (56%)

15,285 Citations

Open accessJournal ArticleDOI: 10.1038/S41586-020-2012-7
Peng Zhou1, Xing-Lou Yang1, Xian Guang Wang2, Ben Hu1  +25 moreInstitutions (3)
03 Feb 2020-Nature
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

... read more

Topics: Coronavirus (67%), Betacoronavirus (54%), Deltacoronavirus (51%) ... show more

12,056 Citations

Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.02.052
16 Apr 2020-Cell
Abstract: The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.

... read more

Topics: Proteases (52%)

10,193 Citations

Open accessJournal ArticleDOI: 10.1038/S41586-020-2008-3
Fan Wu1, Su Zhao2, Bin Yu3, Yan-Mei Chen1  +17 moreInstitutions (4)
03 Feb 2020-Nature
Abstract: Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1–3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans. Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.

... read more

Topics: Coronavirus (62%), Betacoronavirus (59%), Zika virus disease (54%) ... show more

6,266 Citations

Open accessJournal ArticleDOI: 10.1016/S0140-6736(20)30154-9
Jasper Fuk-Woo Chan1, Shuofeng Yuan1, Kin-Hang Kok1, Kelvin K. W. To2  +19 moreInstitutions (2)
15 Feb 2020-The Lancet
Abstract: Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).

... read more

Topics: Coronavirus (51%)

5,975 Citations

No. of citations received by the Paper in previous years