scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Nitrogen Cascade

01 Apr 2003-BioScience (Oxford University Press)-Vol. 53, Iss: 4, pp 341-356
TL;DR: The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N2, which leads to lag times in the continuation of the cascade.
Abstract: Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N2) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth’s atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumul...
Citations
More filters
Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations


Cites background from "The Nitrogen Cascade"

  • ...However, the actual ammonia emission budget remains uncertain [141]....

    [...]

Journal ArticleDOI
16 May 2008-Science
TL;DR: Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.
Abstract: Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.

5,249 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr) and found that human activities increasingly dominate the N budget at the global and at most regional scales, and the terrestrial and open ocean N budgets are essentially dis-connected.
Abstract: This paper contrasts the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr). A variety of data sets are used to construct global N budgets for 1860 and the early 1990s and to make projections for the global N budget in 2050. Regional N budgets for Asia, North America, and other major regions for the early 1990s, as well as the marine N budget, are presented to highlight the dominant fluxes of nitrogen in each region. Important findings are that human activities increasingly dominate the N budget at the global and at most regional scales, the terrestrial and open ocean N budgets are essentially dis- connected, and the fixed forms of N are accumulating in most environmental reservoirs. The largest uncertainties in our understanding of the N budget at most scales are the rates of natural biological nitrogen fixation, the amount of Nr storage in most environmental reservoirs, and the production rates of N2 by denitrification.

4,555 citations


Cites background from "The Nitrogen Cascade"

  • ...Referred to as the nitrogen cascade (Galloway et al. 2003), one atom of nitrogen can, in sequence, increase atmospheric O3 (human health impact), increase fine particulate matter (visibility impact), alter forest productivity, acidify surface waters (biodiversity loss), increase coastal ecosystem productivity, promote coastal eutrophication, and increase greenhouse potential of the atmosphere (via N2O production)....

    [...]

Journal ArticleDOI
10 Mar 2005-Nature
TL;DR: It is estimated that there were 515 (range 300–660) million episodes of clinical P. falciparum malaria in 2002, up to 50% higher than those reported by the World Health Organization and 200% higher for areas outside Africa, reflecting the WHO's reliance upon passive national reporting for these countries.
Abstract: Interest in mapping the global distribution of malaria is motivated by a need to define populations at risk for appropriate resource allocation and to provide a robust framework for evaluating its global economic impact. Comparison of older and more recent malaria maps shows how the disease has been geographically restricted, but it remains entrenched in poor areas of the world with climates suitable for transmission. Here we provide an empirical approach to estimating the number of clinical events caused by Plasmodium falciparum worldwide, by using a combination of epidemiological, geographical and demographic data. We estimate that there were 515 (range 300-660) million episodes of clinical P. falciparum malaria in 2002. These global estimates are up to 50% higher than those reported by the World Health Organization (WHO) and 200% higher for areas outside Africa, reflecting the WHO's reliance upon passive national reporting for these countries. Without an informed understanding of the cartography of malaria risk, the global extent of clinical disease caused by P. falciparum will continue to be underestimated.

2,825 citations

Journal ArticleDOI
TL;DR: On 13 October 1908, Fritz Haber filed his patent on the "synthesis of ammonia from its elements" for which he was later awarded the 1918 Nobel Prize in Chemistry as mentioned in this paper.
Abstract: On 13 October 1908, Fritz Haber filed his patent on the "synthesis of ammonia from its elements" for which he was later awarded the 1918 Nobel Prize in Chemistry. A hundred years on we live in a world transformed by and highly dependent upon Haber–Bosch nitrogen.

2,733 citations

References
More filters
Book
01 Jan 1997
TL;DR: In this paper, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Abstract: 1 The Atmosphere. 2 Atmospheric Trace Constituents. 3 Chemical Kinetics. 4 Atmospheric Radiation and Photochemistry. 5 Chemistry of the Stratosphere. 6 Chemistry of the Troposphere. 7 Chemistry of the Atmospheric Aqueous Phase. 8 Properties of the Atmospheric Aerosol. 9 Dynamics of Single Aerosol Particles. 10 Thermodynamics of Aerosols. 11 Nucleation. 12 Mass Transfer Aspects of Atmospheric Chemistry. 13 Dynamics of Aerosol Populations. 14 Organic Atmospheric Aerosols. 15 Interaction of Aerosols with Radiation. 16 Meteorology of the Local Scale. 17 Cloud Physics. 18 Atmospheric Diffusion. 19 Dry Deposition. 20 Wet Deposition. 21 General Circulation of the Atmosphere. 22 Global Cycles: Sulfur and Carbon. 23 Climate and Chemical Composition of the Atmosphere. 24 Aerosols and Climate. 25 Atmospheric Chemical Transport Models. 26 Statistical Models.

9,021 citations

Journal ArticleDOI
TL;DR: In this article, a review of available scientific evidence shows that human alterations of the nitrogen cycle have approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; increased concentrations of the potent greenhouse gas N 2O globally, and increased concentration of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth.
Abstract: Nitrogen is a key element controlling the species composition, diversity, dynamics, and functioning of many terrestrial, freshwater, and marine ecosystems. Many of the original plant species living in these ecosystems are adapted to, and function optimally in, soils and solutions with low levels of available nitrogen. The growth and dynamics of herbivore populations, and ultimately those of their predators, also are affected by N. Agriculture, combustion of fossil fuels, and other human activities have altered the global cycle of N substantially, generally increasing both the availability and the mobility of N over large regions of Earth. The mobility of N means that while most deliberate applications of N occur locally, their influence spreads regionally and even globally. Moreover, many of the mobile forms of N themselves have environmental consequences. Although most nitrogen inputs serve human needs such as agricultural production, their environmental conse- quences are serious and long term. Based on our review of available scientific evidence, we are certain that human alterations of the nitrogen cycle have: 1) approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; 2) increased concentrations of the potent greenhouse gas N 2O globally, and increased concentrations of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth; 3) caused losses of soil nutrients, such as calcium and potassium, that are essential for the long-term maintenance of soil fertility; 4) contributed substantially to the acidification of soils, streams, and lakes in several regions; and 5) greatly increased the transfer of nitrogen through rivers to estuaries and coastal oceans. In addition, based on our review of available scientific evidence we are confident that human alterations of the nitrogen cycle have: 6) increased the quantity of organic carbon stored within terrestrial ecosystems; 7) accelerated losses of biological diversity, especially losses of plants adapted to efficient use of nitrogen, and losses of the animals and microorganisms that depend on them; and 8) caused changes in the composition and functioning of estuarine and nearshore ecosystems, and contributed to long-term declines in coastal marine fisheries.

5,729 citations


"The Nitrogen Cascade" refers background in this paper

  • ...• Reactive N is responsible (together with S) for acidification and loss of biodiversity in lakes and streams in many regions of the world (Vitousek et al. 1997)....

    [...]

Journal ArticleDOI
TL;DR: One of the first specialized agencies of the United Nations to become active, the Food and Agriculture Organization (FAO) as discussed by the authors has elicited interest beyond the specialized field of agricultural economists.
Abstract: One of the first of the specialized agencies of the United Nations to become active, the Food and Agriculture Organization has elicited interest beyond the specialized field of agricultural economists. Attempting as it does to solve one of the very basic problems of the world, that of an adequate food supply, the organization represents a significant and hopeful international attempt to create a world in which there may actually exist “freedom from want.” The objectives of FAO, as formally expressed in the preamble to the constitution, read as follows:“The nations accepting this constitution being determined to promote the common welfare by furthering separate and collective action on their part for the purpose of raising levels of nutrition and standards of living of the people under their jurisdiction, securing improvements in the efficiency of the production of all food and agricultural products, bettering the conditions of rural populations, and thus contributing toward an expanding world economy, hereby establish the Food and Agriculture Organization of the United Nations.”

4,803 citations

Journal ArticleDOI
David John Griggs1, M. Noguer1
01 Aug 2002-Weather
TL;DR: The terms of reference of the Intergovernmental Panel on Climate Change (IPCC) as discussed by the authors were defined by the World Meteorological Organization (WMO) and the United Nations Environmental Programme (UNEP).
Abstract: The earth’s climate system has demonstrably changed since the pre-industrial era, with some of these changes attributable to human activities. The consequences of climate change pose a serious challenge to policy-makers. Hence they need an objective source of information about climate change, its impacts and possible response options. Recognising this, the World Meteorological Organization (WMO) and the United Nations Environmental Programme jointly established the Intergovernmental Panel on Climate Change (IPCC) in 1988. The terms of reference of the IPCC include:

4,758 citations

Journal ArticleDOI
13 Apr 2001-Science
TL;DR: Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 109 hectares of natural ecosystems would be converted to agriculture by 2050, accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems.
Abstract: During the next 50 years, which is likely to be the final period of rapid agricultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 10(9) hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technological, and policy changes are needed to control the environmental impacts of agricultural expansion.

3,606 citations