scispace - formally typeset
Search or ask a question

The Offshore Floating Type Wave Power Device ”Mighty Whale” Open Sea TestsPerformance of The Prototype –

TL;DR: The Mighty Whale is a floating wave power device based on the Oscillating Water Column (OWC) principle, which converts wave energy into electric energy, and produces a relatively calm sea area behind.
Abstract: Mighty Whale is a floating wave power device based on the Oscillating Water Column (OWC) principle. It converts wave energy into electric energy, and produces a relatively calm sea area behind. The open sea tests were begun in September 1998 in Gokasho Bay, Nansei Town, Mie Prefecture. Measurements collected since then include performance data in typhoon seasons. This paper presents the measurements of wave energy absorption, floating body motion, and wave height dissipation. It is expected that these results will be useful in the design of offshore wave power devices in the future.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the development of wave energy utilization since the 1970s is discussed, with a focus on the characterization of the wave energy resource; theoretical background, with especial relevance to hydrodynamics of wave absorption and control; how a large range of devices kept being proposed and studied, and how such devices can be organized into classes; the conception, design, model-testing, construction and deployment into real sea of prototypes.
Abstract: Sea wave energy is being increasingly regarded in many countries as a major and promising resource. The paper deals with the development of wave energy utilization since the 1970s. Several topics are addressed: the characterization of the wave energy resource; theoretical background, with especial relevance to hydrodynamics of wave energy absorption and control; how a large range of devices kept being proposed and studied, and how such devices can be organized into classes; the conception, design, model-testing, construction and deployment into real sea of prototypes; and the development of specific equipment (air and water turbines, high-pressure hydraulics, linear electrical generators) and mooring systems.

2,115 citations


Cites background from "The Offshore Floating Type Wave Pow..."

  • ...The device consists of a floating structure (length 50 m, breadth 30 m, draught 12 m, displacement 4400 t) which has three air chambers located at the front, side by side, and buoyancy tanks [76]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review of wave energy converters and air turbines can be found in this paper, together with a survey of theoretical, numerical and experimental modelling techniques of OWC converters.

594 citations


Cites methods from "The Offshore Floating Type Wave Pow..."

  • ...The device was deployed near the mouth of Gokasho Bay, in Mie Prefecture, Japan, in 1998 and tested for several years [43,44]....

    [...]

  • ...Mighty Whale, Japan [43] 1998 MP, GV 1....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors bring the latest status on integration of wave energy device with other marine facilities, which is the breakwater structure that may possibly aid to cost sharing, and show that the integration opens up a new dimension to acknowledge the technology harnessing ocean wave, especially for the Asian countries experiencing medium wave condition.
Abstract: One of the most abundant energy sources exists in this world is the ocean wave energy. By far, it has shown to be the most clean, renewable, predicted energy and has raised the potential to compete with the current use of non-renewable energy sources. Recent research conducted on wave energy invention has opened a new dimension to slowly reduce the dependency on fossil fuel by introducing new technology on the renewable world but relatively lacking in economical aspect. This review brings the latest status on integration of wave energy device with other marine facilities, which is the breakwater structure that may possibly aid to cost sharing. Most researches done on this field highlighted countries experiencing rough sea condition and focused less on countries with medium wave condition as faced by the Asian continent. The potential for energy extraction and wave dissipation for medium wave condition will be discussed in this review by considering several aspects including reliability, effectiveness and performance. Finally, this review shows that the integration opens up a new dimension to acknowledge the technology harnessing ocean wave, especially for the Asian countries experiencing medium wave condition.

267 citations

Journal ArticleDOI
TL;DR: In this article, a review of the state of the art on self rectifying air turbines, which could be used for wave energy conversion, has been presented, and the overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been evaluated numerically and compared from the viewpoints of their starting and running characteristics.

221 citations

Journal ArticleDOI
30 Jun 2016-Energies
TL;DR: In this paper, the authors consider the incorporation of wave energy converters into the model of all the conversion stages from ocean waves to the electricity network, referred to as wave-to-wire (W2W) models, and identify the necessary components and their dynamics and constraints, including grid constraints.
Abstract: Control of wave energy converters (WECs) has been very often limited to hydrodynamic control to absorb the maximum energy possible from ocean waves. This generally ignores or significantly simplifies the performance of real power take-off (PTO) systems. However, including all the required dynamics and constraints in the control problem may considerably vary the control strategy and the power output. Therefore, this paper considers the incorporation into the model of all the conversion stages from ocean waves to the electricity network, referred to as wave-to-wire (W2W) models, and identifies the necessary components and their dynamics and constraints, including grid constraints. In addition, the paper identifies different control inputs for the different components of the PTO system and how these inputs are articulated to the dynamics of the system. Examples of pneumatic, hydraulic, mechanical or magnetic transmission systems driving a rotary electrical generator, and linear electric generators are provided.

120 citations